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A B S T R A C T   

In this study, two binary versions of the Water Strider Algorithm (WSA) are proposed and applied to optimal 
feature selection in classification problems. In the new binary versions, the formulations of WSA in continuous 
space are converted into binary space using group-theoretic operators (in AWSA) and sigmoid function (in 
BWSA). AWSA, BWSA, genetic algorithm (GA), and binary particle swarm optimization (BPSO) are selected and 
compared over eighteen well-known datasets from the University of California, Irvine repository. The results of 
AWSA indicate its satisfactory performance compared to those of other algorithms. Then, they are applied to find 
optimal features of a structural health monitoring classification problem using two well-known machine learning 
classifiers, namely k-Nearest Neighbor (KNN) and Naïve Bayes (NB) algorithms. To further improve the accuracy 
of the classification models, a decision-level data fusion technique is proposed based on the improved Dempster- 
Shafer theory. It is demonstrated that the AWSA presents superior results compared to the other algorithms and 
the suggested decision-level data fusion provides a reliable detection of damage.   

1. Introduction 

Nowadays, due to the extensive use of sensors in industry and uni
versal access to the Internet, an immense amount of data is collected. 
Machine learning (ML) algorithms allow researchers to utilize these data 
through high-performance computers and train efficient models for 
decision making in a wide variety of applications [62,21]. Data pro
cessing can be challenging and time-consuming when the collected data 
contains so many features [16]. Additionally, when some of these fea
tures are redundant, irrelevant, or inaccurate, the final model becomes 
complex and leads to lower accuracy and generalization [50]. In such 
cases, it is recommended to remove the redundant dimensions and train 
the model using the optimal features. Although increasing the number of 
ML parameters or training samples might also result in higher accuracy, 
the process would be time- and computation-intensive. 

Many studies in structural health monitoring (SHM) developed and 
investigated damage detection techniques; however, the majority of 
them used model-based methods [11]. This method is based on recursive 
updating of a finite element model, but it should be noticed that con
structing an accurate multivariate and nonlinear model for every 
structure is a demanding task [4]. On the other hand, model-free 

methods aim to extract damage-sensitive features without the need for 
establishing a finite element model of the structure. Execution time, 
accuracy, and robustness of ML models are of great importance in SHM, 
particularly in damage detection applications. Thus, it is crucial to select 
the optimal features for training ML models in a short time and reach 
high accuracy [48,47,14,55]. 

There are generally three categories for feature selection (FS), 
namely filter-based, embedded, and wrapper methods [64]. Filter-based 
methods use statistical scores, such as Fisher score [56], Pearson cor
relation [40], Chi-square [39], and gain ratio [49], to choose the most 
informative, or less-correlated features. Embedded methods are 
employed by learning algorithms, such as Lasso and Ridge regression 
[51,20], which possess built-in functions to select optimal features 
during the training phase. Wrapper methods [3] evaluate and score 
multiple subsets of features based on the performance of the ML algo
rithm to find the optimal combination to maximize the model 
performance. 

Selecting the optimal features by wrapper method is an NP-hard 
optimization problem aiming at minimizing the number of features 
and increasing the accuracy of the final model [10,19]. In general, trying 
all subsets of features (brute-force search) is a computationally 
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demanding task, because for N number of features 2N − 1 subsets must be 
trained and scored, which is impractical for medium- and large-scale 
problems. Therefore, it is necessary to employ fast optimization algo
rithms to find the optimal or near-optimal features. The classic optimi
zation methods have difficulty dealing with such discrete problems. For 
example, they get stuck in local minima, are sensitive to the initial po
sition, and on top of that, their implementation is not an easy task 
because of lacking the mathematical formulation in most of the feature 
selection problems. 

As an alternative solution, the application of Evolutionary Compu
tation (EC) and Swarm Intelligence (SI) metaheuristic algorithms has 
gained growing popularity recently [29,1]. These stochastic algorithms, 
unlike the classic methods, offer feasible solutions in a reasonably short 
time and with acceptable accuracy. Metaheuristics are generally nature- 
inspired search algorithms that employ biological, physical, or behav
ioral patterns and mechanisms to make a balance between global search 
(exploration) and local search (exploitation) [25] and [5]. Among many 
available algorithms, Genetic Algorithm (GA), and Particle Swarm 
Optimization (PSO) have drawn significant attention from researchers in 
different applications. However, due to the No Free Lunch (NFL) theo
rem [57], many other new algorithms – such as Artificial Bee Colony 
(ABC) [24], Harmony Search [13], and Firefly Algorithm [61] – have 
also been developed and applied to FS problem in recent years. Most of 
these algorithms are originally developed for continuous problems, and 
the discretized versions of these algorithms may cause malfunctioning. 

The most recent studies on the application of metaheuristics in FS 
can be generally divided into three categories: 

The first category enhances the performance of metaheuristics by 
incorporating technical strategies. For example, Ouadfel and Abd Elaziz 
[46] incorporated three mechanisms including, an adaptive awareness 
probability, a dynamic local neighborhood, and a novel global search 
strategy in Crow Search Algorithm to alleviate its premature conver
gence; Kılıç et al. [34] integrated PSO with a multi-population strategy 
which starts with two sets of populations generated by random and 
Relieff-based initializations. 

The second category combines two or more algorithms to take 
advantage of different search behaviors and thereby enhancing their 
search capabilities. For instance, Shunmugapriya and Kanmani [54] 
combined the characteristics of Ant Colony Optimization and ABC to 
remove the stagnation behavior of the searching ants and the time- 
consuming global search for initial solutions by the searching bees; 
and Hussain et al. [22] integrated Sine-Cosine Algorithm (SCA) in Harris 
hawks Optimization (HHO), to eliminate ineffective exploration in 
HHO, and enhance the exploitation through adjusting candidate solu
tions dynamically. Xu et al. [58] used a combination of techniques to 
tune the balance between the global and local search capabilities of the 
Moth-flame Optimization (MFO) algorithm, including a simulated 
annealing disturbance mechanism, two types of transfer functions, and 
an ensemble strategy. Lin et al. [37] developed a large-scale information 
fusion system for integrating closed high-utility patterns across multiple 
distributed databases. To reduce the number of items among trans
actional groups, and the computational time, they presented a new 
huybrid genetic k-means (HG-k-means) algorithm. 

The third category tackles the FS problem as a multiobjective opti
mization with two conflicting objectives, i.e. minimizing the number of 
the selected features and simultaneously maximizing the classification 
accuracy. For example, Dong et al. [7] presented an improved NSGA III 
algorithm to optimize several criteria, including ranking loss, average 
precision, coverage, MicroF, Hamming loss, and MacroF. Han et al. [17] 
developed a novel FS algorithm based on multi-objective PSO (MOPSO) 
with adaptive strategies (MOPSO-ASFS) to minimize the number of 
selected features and classification error. Zhou et al. [65] incorporated a 
flexible cut-point mechanism in MOPSO to find the optimal Pareto so
lutions in terms of the classification error, a distance metric, and the 
ratio of feature selection. Lin et al. [38] developed a multi-objective 
model for mining closed high utility itemsets, which makes use of 

Spark’s MapReduce frameworks. They applied the multi-objective k- 
means algorithm to categorize transactions according to the relationship 
to the frequency component. 

It is noteworthy that one of the main causes for the under
performance of algorithms in the binary search space is that the trans
formation mechanisms deteriorate the algorithmic search patterns and 
heuristics [45]. This issue will be further discussed later in Section 3. 
Santucci et al. [52] recently introduced an algebraic framework to 
convert continuous metaheuristics into binary algorithms in an effective 
manner, preserving their fundamental search heuristics. 

The authors have proposed a new metaheuristic called Water Strider 
Algorithm (WSA), inspired by the life cycle of water strider bugs, which 
leads to considerably good results in different engineering and mathe
matical problems. In this paper, an algebraic version of WSA (AWSA) is 
proposed based on the framework presented in Ref. [52], and to the best 
of our knowledge, this is the first work that examines the application of 
this framework in the FS problem. AWSA is firstly assessed through 18 
benchmark datasets. Due to the decent performance and popularity of 
GA and BPSO, their performances are also reported and compared with 
the proposed algorithm. Next, the effectiveness of the method is vali
dated in an experimental SHM problem with time-domain data. In this 
problem, two ML classifiers, namely k-Nearest Neighbors (KNN) and 
Naïve Bayes (NB) algorithms are used, and a decision-level data fusion 
technique based on Dempster–Shafer theory (DST) is employed to in
crease the accuracy and robustness of the results. 

The remainder of the paper is organized as follows: Section 2 pre
sents the standard WSA. The proposed algorithm is introduced in Section 
3. The background theory of Dempster-Shafer’s theory (DST) is 
explained in Section 4. Section 5 presents the assessment of the algo
rithms in terms of statistical measures and tests. Finally, in Section 6, a 
data fusion framework is provided based on the proposed algorithm for 
structural health monitoring problems. 

2. Water strider algorithm 

WSA is a swarm optimization algorithm inspired by the life cycle of 
water strider insects (Gerridae), and their territorial life, ripple 
communication, foraging, and mating behavior [30]. In this algorithm, 
the solutions are represented by the position of a group of water strider 
bugs that can stride and live on lakes and rivers. Due to WSA’s efficient 
explorative and exploitative search mechanisms, it recently has been 
successfully applied to several problems in civil engineering, such as 
inverse damage detection, and optimum design of structures [27,32]. 

To mimic the birth stage of the water strider’s life, WSA starts the 
optimization process by generating various random solutions scattered 
around the search space (lake). These solutions are evaluated by the cost 
function of the problem, which represents the abundance of the food in 
their positions. In a minimization problem, the less value the cost 
function has, the higher abundance it possesses. To form the territories, 
they are sorted based on their costs from the best to the worst solution. 
Afterward, they are divided into groups and the territories are estab
lished. This process is illustrated in Fig. 1 for twenty water striders that 
are divided into three territories. 

In nature, the most abundant areas are usually occupied by the fe
male water striders, which are called “optimum foraging-habitat users”. 
Therefore, the best solutions are considered for females. Additionally, 
each territory includes only one mature male (“keystone”) that mates 
with the females inside the territories. In Fig. 1, the keystones of the 
territories are distinguished with a red circle. 

Mating and foraging are two other main steps of a water strider’s life. 
In the mating step, the position of the keystone is updated using one of 
the Eq. (1) which is related to successful or unsuccessful mating. In 
nature, the keystone sends mating signals through ripple waves toward a 
female inside the territory, and the female answers by either acceptance 
or rejection signals. Here, the probability of acceptance is assumed 50%. 
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{
WSt+1

i = WSt
i + R.randi ifmating happens(withprobabilityof 50%)

WSt+1
i = WSt

i + R.(1 + randi) otherwise
(1)  

where vectors are denoted using boldface. WSt
i is the position of the ith 

water strider in the tth cycle, and randi is the ith random vector with 
values between 0 and 1. R denotes a vector starting at the keystone’s 
position (WSt− 1

i ) and ends at the position of the target female (WSt− 1
F ). 

The target female is selected using roulette wheel selection among the 
resident females of the same territory. 

Water striders spend a lot of energy in the mating step, which should 
be regained through food. The new position of the water strider should 
be evaluated by cost function – indicating the abundance of food, and if 
the new position is better than the previous one, it shows that it has 
access to enough food; otherwise, the keystone moves toward the best 
territory which hosts the most abundant position of search space (lake). 
This movement equation is formulated in Eq. (2) 

WSt+1
i = WSt

i + 2rand.(WSt
BL − WSt

i) (2)  

where WSt
BL is the position of the best WS. It should be noted that the 

inability to improve the previous cost value shows that the water strider 
could not find food. 

The resident water striders of the new territory usually behave 
aggressively against the intruders, and if the newcomer cannot find a 
better position than before – regarding the cost function value, it will be 
killed. In this case, another water strider (successor) will be generated 
randomly in the search space. 

The territory establishment, mating, and feeding processes will be 
executed repeatedly for all territories until the termination condition of 
the algorithm is satisfied. In Algorithm 1, the pseudocode of WSA is 
presented. 

2.1. Binary water strider algorithm 

All steps of Binary WSA (BWSA) are the same as WSA, but the real- 
valued variables should be transformed into binary digits before call
ing the cost function for the evaluation of solutions. To achieve that, 

each variable is first transformed into a random variable with a value 
between 0 and 1 using the Sigmoid function Eq. (3), which takes the 
position of each water strider (WSt

i,k) and returns the probability of 
taking 0 or 1 for each dimension (k). 

T
(

vt
i,k

)
=

1
1 + e− WSt

i,k
(3) 

After the conversion, the binary positions of water striders are 
computed using the following operator: 

Pt
i,k =

{
0 ifrand < T(WSt

i,k)

1 ifrand ≥ T(WSt
i,k)

(4)  

where rand is a random number between 0 and 1 with a uniform dis
tribution. It is noteworthy that this should be generated in each iteration 
and for each variable of the water strider independently. 

2.2. Time complexity analysis 

In this section, the time complexity of the WSA as well as GA, PSO, 
and Ant Colony Optimization (ACO) algorithms in terms of their pa
rameters are provided. In these algorithms, the computational time of 
the cost calculation is the dominating factor in processing time 
compared with other operations. 

Three main processes should be considered when estimating the 
WSA’s computational complexity. All N water striders must be randomly 
initialized and evaluated at the start of the process. As a result, the 
initialization operation has a computational complexity of O(N). The 
attraction or struggling position updating occurs in the second phase for 
T number of territories, which equates to O(T) complexity. Following 
the location update, the method may require 0, 1, or 2 assessments for 
each of the keystones. These assessments are carried out to find food or 
determine succession. In terms of solution quality, the computational 
complexity of the third phase lies between O(0) and O(2T). It is worth 
noting that the first process is applied only once, whereas the second and 
third processes are repeated multiple times (C cycles). Therefore, WSA 
possesses a computational complexity of between O(N+C × T) and at 
most O(N + C× 3T). 

In GA, the initialization of N individuals results in computational 
complexity of O(N). If m proportion of the individuals is reproduced as a 
new population, the algorithm results in O(N + m× N× G), where G 
denotes the number of generations. With N particles and M iterations, 
PSO involves O(N) complexity for random initialization and O(N × M)

complexity for the main loop, resulting in O(N+N × M) complexity. 
Similarly, in ACO, having N searching ants and M iterations, the opti
mization process involves O(N+N × M) runtime complexity. In this 
study, to ensure a fair comparison between the algorithms, the 
maximum number of calls for the cost functions is set as the stopping 
criteria. 

3. Algebraic water strider algorithm 

In encoder-based binary versions of real-valued algorithms solutions 
are stochastically encoded into a binary string. This transformation can 
diminish the performance of the algorithms, since the heuristic notions 
behind the search moves, search neighborhood, and geometry of search 
space might become deteriorated. For example, a fixed real-valued 
numeric vector can be transformed into several quite different bit- 
strings with considerable distances in the binary space. Santucci et al. 
[52] proposed an algebraic framework for deriving discrete variants of 
such real-valued algorithms that tackle the mentioned issues mathe
matically. In the following sections, the concepts from group theory on 
which the framework is established are briefly introduced, and then, the 
counterpart formulations of WSA in this framework are provided. 

Fig. 1. Territory establishment process in WSA.  
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3.1. Group theory preliminaries 

Group theory is extensively used in structural analysis, e.g. see Kaveh 
and Nikbakht [31]. In the Algebraic WSA (AWSA), the binary search 
space is represented through an algebraic structure, or a group, with 
specific operators. Considering X as a set and ⋆ as a binary operator, a 
group (X,⋆) needs to possess the following three properties:  

• Identity element: i.e., there exists a unique neutral element e ∈ X, such 
that for all a ∈ X, a⋆e = e⋆a = a.  

• Inverse element: for every a ∈ X there exists a unique inverse element 
a− 1 from the same set, such that a⋆a− 1 = a− 1⋆a = e.  

• Associativity: for all a,b, c ∈ X,a⋆(b⋆c) = (a⋆b)⋆c. 

In a finitely generated group (X, ⋆), any a ∈ X can be decomposed 
into a finite composition of generators f1, f2,⋯, fl ∈ F where F (gener
ating set) is a finite subset of X. In other words, the set a can be generated 
as a = f1⋆f2⋆⋯⋆fl. It should be noted that every a ∈ X can be produced 
by many decompositions with different lengths (l). In the next section, 
an algorithm for finding a minimal decomposition will be provided. 

Every group can be represented with a Cayley digraph C(X,⋆, F) with 
vertices corresponding to the elements of X, and any pair of vertices (a,
b) are connected with an edge f if and only if b = a⋆f . In Fig. 2, a Cayley 
graph corresponding to a bit-string group with four bits is depicted. For 
an excellent explanation of graph theory, the reader may refer to Harary 
[18], and for extensive applications in structural analysis, one may refer 
to Kaveh [26]. 

3.2. Bit-string group 

The set of the n-length bit-strings (Bn = {0,1}n) forms a group with 
respect to the bitwise XOR operator, denoted by ∨. The properties of this 
group are presented below and proved in Appendix:  

• Identity element 

A string with all-zero bits is defined as an identity element (e).  

• Inverse element 

The inverse of an element is considered as itself, i.e., a− 1 = a.  

• Associativity 

For any a, b, c ∈ B, a ∨ (b ∨ c) = (a ∨ b) ∨ c. 

A suitable generating set for a binary group is the flip of bits from 
zero to one and vice versa, which is mathematically expressed by U =

{ui ∈ Bn|ui(i) = 1&ui(j) = 0forj ∕= i}. For example, considering a =

(10001) as a binary element and u3 = (00100) as a generator, a ∨ u3 
results in the flip of the third bit of a as (10101). Moreover, the gener
ating set of an element such as (10011) corresponds to < u1,u4,u5 >, or 
any other combination of these three generators. 

To implement this theory in metaheuristic algorithms, the group- 
theoretic counterparts of numerical addition (⊕), subtraction (⊖ ), 
and multiplication (⊙) operators should be developed. The addition 
operation c = a ⊕ b is defined as the application of the vector b (a path 
on the Cayley graph) to the point a (a vertex on the Cayley graph). 
Hence, by decomposing the vector b as < f1,f2,⋯,fl >, c is computed by 
c = a⋆(f1⋆f2⋆⋯⋆fl). The subtraction operation c = a ⊖ b is defined as 
the difference between two vectors a and b. Hence, by decomposing the 
Hamming distance of these two elements as < f1,f2,⋯,fl >, c is computed 
as (f1⋆f2⋆⋯⋆fl). To implement the scalar multiplication (m ⊙ a), two 
cases are defined; in the first case, the multiplier possesses a positive real 
value less than one (m < 1), and in the second case, it is equal to or 
higher than one (m ≥ 1). In the first case, the weight of the element (|a|) 
is calculated as its Hamming weight. Afterward, a is decomposed into its 
basic generators with Hamming weight of 1. Eventually, a set of [m.|a|]
number of the generators should be randomly selected and applied to 
the identity element (e). In the second case, the difference between the 
maximal weight element (ω) filled with “1″ bits and the element a is 
calculated as explained above. Then, the calculated difference is 
decomposed into its basic generators. Finally, [m.|a|] − 1 generators are 
randomly selected and applied to the element a. 

3.3. Algebraic formulations for AWSA 

In the algebraic version of the WSA (AWSA), the equations presented 
in Section 2 are reformulated using algebraic operators. In the following, 
the new formulas are provided. 

In the birth step, the water striders’ position should be randomly 
generated in the binary space. Eq. (1) regarding the mating process is 
reformulated as Eq. (5) 
{

WSt+1
i = WSt

i ⊕ rand ⊙ R ifmating happens(withprobabilityof 50%)

WSt+1
i = WSt

i ⊕ (1 + rand) otherwise

(5) 

where, all variables are the same as in the previous equation, but the 
parameter rand is a scalar random number between 0 and 1, instead of a 
random vector, and the R calculated as Eq. (6) 

Fig. 2. An illustration of a Cayley graph.  
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R = (WSt
S,i ⊖ WSt

i) (6) 

in which, the WSt
S,i is the selected female water strider for mating 

with ith water strider in tth cycle as described in Section 2. Additionally, 
the feeding process imitated by Eq. (2) is formulated as below 

WSt+1
i = WSt

i ⊕ 2rand.(WSt
BL ⊖ WSt

i) (7) 

where, again the rand parameter is a uniform random number be
tween 0 and 1. 

The flowchart of the proposed algorithm is illustrated in Fig. 3. 

4. Dempster-Shafer theory 

The Dempster-Shafer theory (DST), or evidence theory, is a mathe
matical approach for data fusion considering different degrees of un
certainties in the process of classification, and incomplete information. 
It was originally proposed by Dempster [6], and further developed by 
Shafer [53]. This theory relies on three basic metrics, namely Basic 
Probability Assignment (BPA), Belief (BEL), and Plausibility (PL). 

BPA, or mass function, is mathematically expressed as follows: 

m : P→[0, 1] : where m(∅) = 0 and
∑

A∈P
m(A) = 1 (8)  

where P is the set of all possible subsets, m(A) is the measure of the 
probability of A, and ∅ is the null set. BEL represents the total evidence 
to support an outcome, calculated as follows: 

Bel(A) =
∑

B⊆A
m(B) (9) 

PL, also called the upper bound, presents an uncertainty measure for 
the assumed outcome: 

PL(A) =
∑

B∩A=∅
m(B) (10) 

Dempster rule provides a formulation for combining two mass 
functions, such as m1 and m2, regarding two pieces of evidence by Eq. 

(11) 

m(A) = m1(B)m2(C) = (1 − K)
− 1

∑

B∩C=A
m1(B) × m2(C), when A ∕= ∅ (11) 

K is the mass associated with conflict which is determined by the 
summation of BPA product of sets with the null intersection as Eq. (12): 

K =
∑

B∩C=∅
m1(B) × m2(C) (12)  

4.1. Improved Dempster-Shafer theory 

Zadeh [63] criticized DST, pointing out paradoxical examples in 
which the Dempster rule leads to counterintuitive results. Yager [59] 
addressed the problem by classifying the conflicting evidence into the 
set Θ which presents the classifier’s lack of knowledge and replaced BPA 
with ground probability assignment (q), which are formulated in the 
following: 

Θi = 1 − αi (13)  

q(A) =
∑

∩Ai=A
[m1(A1) × m2(A2) × … × mi(Ai) ] (14)  

where αi is called the importance factor, or weight factor. Given an 
output (Oi), the new mass is calculated as 

mi = αi × Oi (15) 

In Yager’s rule, contrary to Dempster’s rule, the ground probability 
assignment of the null set can be larger than zero (q(∅) ≥ 0). Finally, the 
new combination rule is defined by Eq. (16): 

m(A) =
q(A)

1 − q(∅)
(16) 

In this study, the improved version of DST is applied to decision 
fusion in the SHM problem to reach more consistent, accurate, and 
robust classifications. Further details about these methods can be found 
in Refs. [60,53,35]. 

5. Experimental results and discussions 

To investigate and compare the efficiency of optimizers, eighteen 
well-studied datasets from the UCI ML repository [12] are selected and 
implemented in this section. These datasets are listed in Table 1, and 
they cover a wide range of problems with various features and samples. 

KNN (k = 5) is selected as the classification method, and the testing 

Fig. 3. The flowchart of AWSA.  

Table 1 
Machine Learning Benchmark datasets.  

DS# Dataset Number of Features Number of Samples 

1 Tic-tac-toe 9 958 
2 Vote 16 300 
3 WaveformEW 40 5000 
4 Wine 13 178 
5 Zoo 16 101 
6 BreastCancer 9 699 
7 BreastEW 30 569 
8 CongressEW 16 435 
9 Exactly 13 1000 
10 Exactly2 13 1000 
11 HeartEW 13 270 
12 Ionosphere 34 351 
13 KrVsKpEW 36 3196 
14 Lymphography 18 148 
15 M− of− n 13 1000 
16 PenglungEW 325 73 
17 Sonar 60 208 
18 SpectEW 22 267  
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and training data are determined by 10-fold cross-validation to avoid 
overfitting. The objective of the optimization problem is defined as the 
minimization of classification error as well as the number of selected 
features, which is mathematically expressed as [41]: 

Minimize : Cost = γ × ER+(1 − γ) × SR (17) 

where ER denotes the classification error rate, SR is defined as the 
ratio of the number of selected features to the number of all attributes, 
and γ is a control parameter that is assumed as 0.99 according to 
Ref. [9]. Furthermore, the internal parameters of the tested algorithms 
-AWSA, BWSA, GA [15], and BPSO [33] - are summarized in Table 2, 
and the maximum number of function evaluations (NFE = 560) is 
selected as the stopping criterion for all optimizers [9,42]. It is note
worthy that the search space of all algorithms is the same. Due to the 
stochastic nature of algorithms, each example is computed thirty times 
independently. 

5.1. Statistical measures 

In this section, the performance of the algorithms in terms of several 
statistical measures, namely minimum cost (Min), the average cost 
(Mean), standard deviation (Std), and average selection ratio (AvgSR) 
are compared. The results for the datasets are presented in Table 3, in 

Table 2 
Parameter setting for algorithms.  

GA Number of Chromosomes 8 
Crossover Fraction 0.8 
Mutation Rate 0.02 

BPSO Number of Populations 8 
ω Linearly decreased from 0.9 to 0.4 
c1 2 
c2 2 

BWSA and AWSA Number of Water striders 8 
Number of Territories 2  

Table 3 
The statistical results for different datasets.  

DS #1     DS #2      

Min Mean Std AvgSR  Min Mean Std AvgSR 
AWSA 0.1628 0.1677 0.0024 0.8593 AWSA 0.0382 0.0437 0.0029 0.2979 
BWSA 0.1535 0.1698 0.0077 0.7852 BWSA 0.0413 0.045 0.0038 0.3229 
GA 0.1618 0.1721 0.0087 0.7926 GA 0.0388 0.0467 0.0056 0.3917 
BPSO 0.1607 0.1732 0.0115 0.8148 BPSO 0.0388 0.0451 0.0033 0.3 
DS #3     DS #4      

Min Mean Std AvgSR  Min Mean Std AvgSR 
AWSA 0.1568 0.1635 0.0033 0.5575 AWSA 0.0324 0.0423 0.0048 0.5051 
BWSA 0.1588 0.1665 0.005 0.5667 BWSA 0.0372 0.0444 0.0045 0.5128 
GA 0.1578 0.1692 0.0071 0.555 GA 0.0324 0.0431 0.0059 0.4897 
BPSO 0.1646 0.1693 0.0026 0.5708 BPSO 0.0324 0.0424 0.0054 0.5179 
DS #5     DS #6      

Min Mean Std AvgSR  Min Mean Std AvgSR 
AWSA 0.0332 0.0362 0.0053 0.4229 AWSA 0.0265 0.0301 0.0013 0.6333 
BWSA 0.0332 0.0388 0.0067 0.4458 BWSA 0.0265 0.0303 0.0014 0.6667 
GA 0.0332 0.0484 0.0149 0.4667 GA 0.0279 0.0305 0.0013 0.6593 
BPSO 0.0332 0.0451 0.0079 0.4958 BPSO 0.0293 0.0312 0.0011 0.6556 
DS #7     DS #8      

Min Mean Std AvgSR  Min Mean Std AvgSR 
AWSA 0.0448 0.0484 0.0019 0.3756 AWSA 0.0317 0.0351 0.0023 0.3125 
BWSA 0.0472 0.0509 0.0017 0.3578 BWSA 0.0322 0.0365 0.0023 0.3458 
GA 0.0465 0.0549 0.0063 0.4233 GA 0.0311 0.0375 0.0035 0.3083 
BPSO 0.0458 0.0494 0.0024 0.3978 BPSO 0.0322 0.0385 0.0036 0.2979 
DS #9     DS #10      

Min Mean Std AvgSR  Min Mean Std AvgSR 
AWSA 0.0046 0.0046 0 0.4615 AWSA 0.2358 0.2402 0.0007 0.0897 
BWSA 0.0046 0.0459 0.1002 0.4615 BWSA 0.2397 0.2403 0.0002 0.1026 
GA 0.0046 0.0246 0.0762 0.4692 GA 0.2363 0.2404 0.001 0.1436 
BPSO 0.0046 0.0046 0 0.4615 BPSO 0.2379 0.2402 0.0006 0.1 
DS #11     DS #12      

Min Mean Std AvgSR  Min Mean Std AvgSR 
AWSA 0.1374 0.1454 0.0056 0.4308 AWSA 0.0698 0.0884 0.0104 0.2765 
BWSA 0.1403 0.1564 0.0082 0.3949 BWSA 0.0638 0.0956 0.0122 0.3265 
GA 0.1366 0.1437 0.0052 0.4231 GA 0.0794 0.1015 0.0123 0.3441 
BPSO 0.1387 0.1467 0.0031 0.4077 BPSO 0.0847 0.0992 0.0072 0.2784 
DS #13     DS #14      

Min Mean Std AvgSR  Min Mean Std AvgSR 
AWSA 0.017 0.0232 0.0028 0.5176 AWSA 0.0931 0.1173 0.0166 0.513 
BWSA 0.0239 0.0317 0.0177 0.5417 BWSA 0.0925 0.133 0.0191 0.5259 
GA 0.0187 0.0306 0.017 0.5222 GA 0.0925 0.1335 0.0238 0.5019 
BPSO 0.0199 0.0264 0.0033 0.5222 BPSO 0.0986 0.1263 0.0159 0.5037 
DS #15     DS #16      

Min Mean Std AvgSR  Min Mean Std AvgSR 
AWSA 0.0046 0.0046 0 0.4615 AWSA 0.0718 0.0817 0.0095 0.4446 
BWSA 0.0046 0.0046 0 0.4615 BWSA 0.0589 0.0886 0.0115 0.4474 
GA 0.0046 0.0046 0 0.4615 GA 0.0584 0.0822 0.0118 0.4438 
BPSO 0.0046 0.0098 0.0247 0.4846 BPSO 0.0586 0.0842 0.0092 0.4662 
DS #17     DS #18      

Min Mean Std AvgSR  Min Mean Std AvgSR 
AWSA 0.0951 0.1209 0.0117 0.465 AWSA 0.1371 0.1589 0.0095 0.4303 
BWSA 0.081 0.124 0.0156 0.4561 BWSA 0.1482 0.163 0.0092 0.4894 
GA 0.0951 0.123 0.0135 0.4811 GA 0.1459 0.1613 0.0096 0.4348 
BPSO 0.0997 0.1259 0.0108 0.4561 BPSO 0.1492 0.1674 0.0079 0.4409  
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which the best results are written in boldface. As can be seen, consid
ering the Min among all independent runs, the AWSA, BWSA, GA, and 
BPSO have reached the minimum cost in 11, 8, 8, and 4 cases, respec
tively. In terms of Mean, the algorithms AWSA, BWSA, GA, and PSO 
have obtained the best results in 17, 1, 2, and 2 cases, respectively; and 
in terms of AvgSR, AWSA in 9 datasets, and BWSA in 6 datasets have 
obtained the average minimum results. BPSO in 9 cases and AWSA in 7 
cases have obtained the best Std among others; however, the mean 
values of AWSA are far better than BPSO as mentioned before. The re
sults show that the proposed AWSA has a competitive performance 
compared to other powerful algorithms, regarding these statistical 
metrics, 

5.2. Statistical test 

In this section, a nonparametric statistical test, the so-called Kruskal- 
Wallis Test [36], is performed to compare the results of the algorithms. 
In this test, ranks of the data are used for comparison, rather than 
numeric values, and the p-value measures the significance of the chi- 
square statistic. In Table 4, for the sake of brevity, only the cases 
rejecting the null hypothesis of equal medians at a 5% significance level 
are reported. In the second column, the algorithms are rated from the 

best to worst algorithms, where ‘<’ and ‘≪’ signs stand for the nonsig
nificant and significant outperformance, and ‘=’ stands for equal per
formance. In the last column, positive p-values show that the first- 
mentioned algorithm has lower costs than the second one and vice versa. 

According to the rating in Table 4, in datasets #1, #2, #4, #16, and 
#17, none of the algorithms can reject the null hypothesis. AWSA has 
the best or equal performance compared to other algorithms in all 
problems, except for DS #4 and DS #11. AWSA outperforms BWSA, GA, 
and BPSO, in 5, 7, and 9 datasets, respectively; and it has never been 
outperformed by others at a 5% significance level. Additionally, BWSA, 
as the second-best algorithm in terms of mean rank, significantly out
performs BPSO or GA in only 4 datasets. All in all, this nonparametric 
test confirms that the results obtained by AWSA are generally better 
than others. 

5.3. Convergence behavior 

The convergence curve is another indicator by which the conver
gence speed and the local minima can be identified. The average 
convergence curves of the algorithms are presented in Fig. 4, in which 
the average cost values, computed by Eq. (17) for all runs, are plotted 
against the number of function evaluations (NFEs). While BPSO has the 
highest convergence rate in almost half of the cases, it usually gets stuck 
and has a premature convergence toward local minima. On contrary, 
although the AWSA has a high initial rate in three cases (datasets #1, 
#5, #6), it eventually has better performance than others, as seen in 
Fig. 4 and was proved in the preceding sections. Comparing the 
convergence curves of AWSA and BWSA, it becomes evident that the 
algebraic operators enhance the exploration behavior of the algorithm 
by which more optimal results are discovered, as well as the exploitation 
search which leads to constant improvement in the cost value in the 
course of iterations. 

6. Application to structural health monitoring 

6.1. Experimental data 

The experimental vibration response data from the IASC-ASCE SHM 
benchmark building was used to validate the proposed framework 
[2,23]. As shown in Fig. 5, this benchmark model is a four-story quarter- 
scale steel frame that is 2.5 m × 2.5 m × 3.6 m. The force input to the 
structure was provided through ambient vibration, and the diagonal 
bracing members were removed to simulate different damage scenarios. 
In total, sixteen accelerometers were placed to measure the vibration 
response of the building in both horizontal directions. Nine damage 
patterns were simulated to investigate the performance of damage 
detection algorithms, which are as follows: (1) fully braced undamaged 
frame; (2) missing all east side braces; (3) removed braces on all floors in 
one bay on SE corner; (4) removed braces on 1st and 4th floors in one 
bay on SE corner (5) removed braces on 1st floor in one bay on SE 
corner; (6) removed braces on all floors on the east face, and the 2nd- 
floor braces on the north face; (7) all braced removed on all faces; (8) 
configuration 7, plus loosened bolts on all floors - both ends of beams on 
the east face, north side; (9) configuration 7, plus loosened bolts on 
floors 1 and 2 - both ends of beams on the east face, north side. The 
details of the experimental setup as well as the data can be accessed from 
the NEES Database for Structural Control and Monitoring Benchmark 
[8]_ENREF_1. 

6.2. Preprocessing and feature extraction 

Time series recorded for different damage patterns are preprocessed, 
and the trends and outliers are removed. These outliers could adversely 
affect statistical features which usually manifest themselves in unde
sirable performance of the classifiers. Afterward, 15 features in the time 
series listed in Table 5 are extracted from the recorded data, where N is 

Table 4 
The results of statistical tests.  

Problems Comparison p-values 

DS #1 AWSA < BWSA < GA < BPSO – 
DS #2 AWSA < BWSA < BPSO < GA – 
DS #3 AWSA < BWSA < GA < BPSO AWSA vs. GA: p-value = 0.00075559 

AWSA vs. BPSO: p-value = 5.078e-06 
BWSA vs. BPSO: p-value = 0.047447 

DS #4 GA < AWSA < BPSO < BWSA – 
DS #5 AWSA < BWSA ≪ GA <

BPSO 
AWSA vs. GA: p-value = 3.3444e-05 
AWSA vs. BPSO: p-value = 9.2095e-06 
BWSA vs. GA: p-value = 0.011715 
BWSA vs. BPSO: p-value = 0.0048154 

DS #6 AWSA < BWSA < GA < BPSO AWSA vs. BPSO: p-value = 0.015464 
DS #7 AWSA < BPSO ≪ BWSA <

GA 
AWSA vs. BWSA: p-value =
0.00029252 
AWSA vs. GA: p-value = 7.5496e-08 
BWSA vs. BPSO: p-value = -0.018013 
GA vs. BPSO: p-value = -2.8783e-05 

DS #8 AWSA < BWSA < GA < BPSO AWSA vs. GA: p-value = 0.0089445 
AWSA vs. BPSO: p -value =
0.00046982 

DS #9 AWSA = BPSO < GA < BWSA AWSA vs. BWSA: p -value =
0.0041469 
BWSA vs. BPSO: p -value =
-0.0041469 

DS #10 BWSA < BPSO < AWSA < GA BWSA vs. GA: p -value = 0.040345 
DS #11 GA < AWSA < BPSO ≪ 

BWSA 
AWSA vs. BWSA: p-value = 1.3824e- 
07 
BWSA vs. GA: p-value = -3.9878e-09 
BWSA vs. BPSO: p-value =
-0.00036802 
GA vs. BPSO: p-value = 0.044801 

DS #12 AWSA < BWSA < BPSO < GA AWSA vs. GA: p-value = 0.00042193 
AWSA vs. BPSO: p-value = 0.0013915 

DS #13 AWSA ≪ BPSO < GA <
BWSA 

AWSA vs. BWSA: p-value = 1.0232e- 
07 
AWSA vs. GA: p-value = 0.00016894 
AWSA vs. BPSO: p-value = 0.0054247 

DS #14 AWSA < BPSO < GA < BWSA AWSA vs. BWSA: p-value = 0.0066756 
AWSA vs. GA: p-value = 0.013418 

DS #15 AWSA = BWSA = GA ≪ 
BPSO 

AWSA vs. BPSO: p-value =
0.00071717 
BWSA vs. BPSO: p-value =
0.00071717 
GA vs. BPSO: p-value = 0.00071717 

DS #16 AWSA < GA < BPSO < BWSA – 
DS #17 AWSA < GA < BWSA < BPSO – 
DS #18 AWSA < GA < BWSA < BPSO AWSA vs. BPSO: p-value = 0.0046415 

GA vs. BPSO: p-value = 0.046714  
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Fig. 4. The convergence curves of the algorithms for different benchmark problems.  
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Fig. 4. (continued). 
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the number of all data points in the time series t. It is noteworthy that 
other sophisticated features, such as frequency domain or time
–frequency features, also could be used, but since the extraction of such 
features is computationally expensive, and to show the efficiency of the 
method, they are not included [44,43]. 

Fig. 4. (continued). 

Fig. 5. The IASC-ASCE SHM benchmark (photo courtesy of Prof. Carlos Ven
tura, UBC). 

Table 5 
The features derived from time series.  

Feature Definition Feature Definition 

Mean 
F1 =

∑N
n=1t(n)

N 
Impulse factor F9 =

F2
1
N
∑N

n=1
|t(n)|

Max F2 = max(|t(n) |) Crest factor F10 =
F2

F3 
Root mean 

square F3 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1(t(n))
2

N

√ 3rd central 
moment F11 =

∑N
n=1(t(n) − F1)

3

N − 1 
Standard 

deviation 
F4 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1(t(n) − F1)
2

N − 1

√
4th central 
moment F12 =

∑N
n=1(t(n) − F1)

4

N − 1 
Variance 

F5 =

∑N
n=1(t(n) − F1)

2

N − 1 
5th central 
moment F13 =

∑N
n=1(t(n) − F1)

5

N − 1 
Skewness 

F6 =

∑N
n=1(t(n) − F1)

3

(N − 1)F4
3 

6th central 
moment F14 =

∑N
n=1(t(n) − F1)

6

N − 1 
Kurtosis 

F7 =

∑N
n=1(t(n) − F1)

4

(N − 1)F4
4 

FM4 F15 =
F12

(F5)
2 

Shape factor F8 =
F3

1
N
∑N

n=1
|t(n)|
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6.3. Optimal feature selection for KNN and NB classifiers 

In this section, both KNN and NB algorithms are utilized for damage 
classification in the aforementioned SHM problem. The statistical results 
of 30 independent runs for the algorithms are presented in Table 6, 
whose best results are written in boldface. As seen, considering the KNN 
classifier, AWSA obtained the best results for all metrics, showing an 

efficient performance in reaching quality results. Although, in this case, 
all algorithms were able to find the minimum cost over thirty inde
pendent runs, AWSA’s average cost is considerably less than the other’s. 
Additionally, for the NB classifier, AWSA ranked first among others in 
terms of average cost, minimum SR, and average SR. Comparing the 
results of KNN to those of NB, it is evident that NB in this problem 
generally reaches lower cost values. 

The results of the Kruskal-Wallis test feature selection with a p-value 
less than 0.05 for both KNN and NB classifiers are provided in Table 7. 
As seen, using the KNN classifier, AWSA outperformed the other algo
rithms, and in the case of the NB classifier, it works significantly better 
than BWSA. In both cases, AWSA has generally better performance than 
others. 

The average convergence curves using KNN are plotted in Fig. 6(a), 
which shows the higher convergence rate of the AWSA compared with 
other algorithms. The convergence curves for NB are depicted in Fig. 6 
(b), and, as can be seen, BPSO converges rapidly, yet AWSA converged 
to solutions with lower cost values. 

The obtained optimal features are presented in Table 8. As shown, 
the second and fourth features (F2 and F4) are constantly among the 
optimum features for KNN, and F2 is among the optimum features for 
NB. 

Fig. 7 compares the confusion matrices of the sum of test results for 
KNN and NB algorithms trained by the optimal solutions of AWSA with 
those trained by all 15 features. This figure justifies the necessity of 
optimal feature selection for achieving better performance. For example, 
37.8% of samples related to the fourth damage pattern are wrongly 
categorized by the KNN algorithm, and 20% of samples regarding the 
intact model are misclassified as damaged when all features are fed to 
NB. Therefore, feeding more features as the input data of classification 
algorithms can negatively impact the results. In the subsequent section, 
an innovative idea based on decision fusion is suggested which can 
enhance the metrics by combining the classification results of KNN and 
NB methods. 

Table 6 
The statistical results for KNN and NB classifiers.  

Classifier Algorithm Min. Cost Avg. Cost Min. SR Avg. SR 

KNN AWSA  0.0387  0.0571  0.1333  0.2778  
BWSA  0.0387  0.0893  0.2000  0.4844  
GA  0.0387  0.1657  0.2000  0.5711  
BPSO  0.0387  0.1438  0.2000  0.5133 

NB AWSA  0.0167  0.0183  0.1333  0.2111  
BWSA  0.0198  0.0287  0.2000  0.3467  
GA  0.0167  0.0197  0.2000  0.2189  
BPSO  0.0167  0.0190  0.2000  0.2111  

Table 7 
The results of Kruskal-Wallis test for KNN and NB classifiers.  

Classifier Comparison P-values less than 0.05 

KNN AWSA ≪ BWSA < BPSO < GA AWSA vs. BWSA: p-value = 0.019139 
AWSA vs. GA: p-value = 8.369e-07 
AWSA vs. BPSO: p-value =
0.00027389 

NB AWSA < BPSO < GA ≪ BWSA AWSA vs. BWSA: p-value = 3.7757e- 
09 
BWSA vs. GA: p-value = -3.7683e-09 
BWSA vs. BPSO: p-value = -1.5706e- 
08  

Fig. 6. The average convergence curves for (a). KNN, (b). NB.  

Table 8 
Optimum features for KNN and NB.    

Features  

Algorithms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

KNN AWSA  ✓  ✓        ✓     
BWSA  ✓ ✓ ✓ ✓      ✓      
GA  ✓  ✓        ✓     
BPSO  ✓  ✓       ✓  ✓   

NB AWSA  ✓  ✓   ✓          
BWSA  ✓  ✓   ✓        ✓  
GA  ✓   ✓          ✓  
BPSO ✓ ✓ ✓            ✓  
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6.4. Decision fusion 

In this step, different classifiers are fused in the decision level using 
improved DST explained in Section 4.1. Since KNN and NB are among 
the fastest classifiers, the optimization and training process of these 
methods can be executed in a reasonably fast time, although their simple 
structure might cause low accuracy. Therefore, herein the output com
ing from these classifiers is integrated to determine the damage patterns 
accurately. The flowchart of the implemented decision-level fusion is 
illustrated in Fig. 8. As shown, this technique has a parallel structure 

which can be done within a short time. For this purpose, the best fea
tures found by AWSA obtained in the previous section using KNN and NB 
are utilized, whose α factors (weight factors) are assumed equal to 0.97, 
and 0.985, respectively. 

The confusion matrix of the fused model is represented in Fig. 9(a), 
and its corresponding metrics are provided in Fig. 9(b). These figures 
show that decision fusion, having only one wrongly classified item, 
considerably improves classification. The classification metrics are also 
near one that is the best possible value. 

Fig. 7. Confusion matrices of KNN and NB.  
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Fig. 8. The flowchart of the proposed decision fusion technique.  

Fig. 9. The results of decision fusion: (a) confusion matrix, (b) classification metrics.  
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7. Conclusions 

In this paper, an efficient algebraic version of the WSA algorithm 
(AWSA) has been introduced for feature selection in the wrapper 
method. Group theoretic binary counterparts of the formulations in 
continuous space have been developed for an efficient search to find the 
optimal subset of features. Eighteen datasets from the UCI repository 
have been selected as the first set of problems. The results show that the 
new algorithm generally outperforms other algorithms – such as BWSA, 
BPSO, and GA – in terms of statistical metrics and tests. The convergence 
behavior curves indicate that BPSO converges rapidly in the initial 
stages of optimization, yet AWSA usually finds low-cost solutions. 

In the second part of the manuscript, the metaheuristic algorithms 
have been applied to an experimental SHM problem, where the new 
approach is capable of detecting damage patterns with acceptable ac
curacies. The improved DST has been suggested to fuse final decisions 
obtained by KNN and NB methods. This decision fusion technique in
dicates a further enhancement in the accuracy of the classification 
results. 

With the recent rapid extensions of ANNs, Machine Learning and 
Altificial Intellegance, a great extension of the ideas like those presentd 
in this article is expected, Kaveh et al. [28]. 

The authors have applied and investigated the efficiency of the 

proposed algorithm to SHM problems. It can be utilized to tackle other 
combinatorial optimization problems, such as the knapsack problem. 
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Appendix 

Definition 1. Logical NOT is denoted by ¬ sign, such that: ¬0 = 1, and ¬1 = 0. 

Lemma 1. For every a ∈ B, we have a ∨ 1 = ¬a. 

Proof: Let’s consider any a ∈ B. We have two cases: 

Case 1. a = 0. Then. 

a ∨ 1 = 0 ∨ 1 = 1 = ¬0 = ¬a (18)  

Case 2. a = 1. Then. 

a ∨ 1 = 1 ∨ 1 = 0 = ¬1 = ¬a (19) 

In both cases, we see that a ∨ 1 = ¬a, as required. 

Lemma 2. For every a,b ∈ B, we have.a ∨ ¬b = ¬(a ∨ b)

Proof: Let’s consider any a,b ∈ B. We have two cases: 

Case 1. b = 0. Then. 

a ∨ ¬b = a ∨ ¬0 = a ∨ 1 (20) 

and according to Lemma 1: 

a ∨ 1 = ¬a = ¬(a ∨ 0) = ¬(a ∨ b) (21)  

Case 2. b = 1. Then. 

a ∨ ¬b = a ∨ ¬1 = a ∨ 0 = a = ¬(¬a) (22) 

and according to Lemma 1: 

¬(a ∨ 1) = ¬(a ∨ b) (23) 

In both cases, the first term a ∨ ¬b leads to the second term ¬(a ∨ b) as required. 
Proof of the identity element of the bit-string group: 
Let’s consider two possible cases for one bit of element a: 
Case 1: a = 0. Then, it can be said 

a ∨ e = 0 ∨ e = 0 ∨ 0 = 0 (24) 
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Case 2: a = 1. Then it means 

a ∨ e = 1 ∨ e = 1 ∨ 0 = 1 (25) 

Hence, it can be seen the defined identity element functions as a neutral element for both cases. 
Proof of the inverse element of the bit-string group: 
Let’s consider the following two possible cases for a bit of a: 
Case 1: a = 0. Then a− 1 = 0, and it can be written as 

a⋆a− 1 = 0 ∨ 0 = 0 (26) 

Case 2: a = 1. Then a− 1 = 1, and it means 

a⋆a− 1 = 1 ∨ 1 = 0 (27) 

The defined inverse element is valid because a⋆a− 1 leads to e for both cases. 
Proof of the associativity of the bit-string group: 
To prove a ∨ (b ∨ c) = (a ∨ b) ∨ c for any a, b, c ∈ B, let’s consider two cases: 

Case 1. c = 0. Then it yields. 

a ∨ (b ∨ c) = a ∨ (b ∨ 0) (28) 

Since 0 is the identity element: 

a ∨ (b ∨ 0) = a ∨ b = (a ∨ b) ∨ 0 = (a ∨ b) ∨ c (29)  

Case 2. c = 1. Then. 

a ∨ (b ∨ c) = a ∨ (b ∨ 1) (30) 

using Lemma 1: 

a ∨ (b ∨ 1) = a ∨ ¬b (31) 

using Lemma 2: 

a ∨ ¬b = ¬(a ∨ b) (32) 

then, using Lemma 1: 

¬(a ∨ b) = (a ∨ b) ∨ 1 = (a ∨ b) ∨ c. (33) 

As seen, both cases result in the second term, (a ∨ b) ∨ c. 
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