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Abstract: Data-driven methods in structural health monitoring (SHM) is gaining popularity due
to recent technological advancements in sensors, as well as high-speed internet and cloud-based
computation. Since the introduction of deep learning (DL) in civil engineering, particularly in SHM,
this emerging and promising tool has attracted significant attention among researchers. The main
goal of this paper is to review the latest publications in SHM using emerging DL-based methods
and provide readers with an overall understanding of various SHM applications. After a brief
introduction, an overview of various DL methods (e.g., deep neural networks, transfer learning, etc.)
is presented. The procedure and application of vibration-based, vision-based monitoring, along with
some of the recent technologies used for SHM, such as sensors, unmanned aerial vehicles (UAVs), etc.
are discussed. The review concludes with prospects and potential limitations of DL-based methods
in SHM applications.

Keywords: deep learning; machine learning; structural health monitoring; crack detection; damage
detection; data science; computer vision

1. Introduction

Civil infrastructures are prone to a significant loss of functionality due to structural deficiencies
that are primarily caused by material deterioration and loadings from earthquake, wind, vehicle,
or ambient vibrations. In the United States, on a grade scale of A (excellent condition) to F (unacceptable
condition), the overall score was as low as D+ for infrastructures, and C+ for bridges with an estimated
$123Bn for retrofitting [1]. The report states that 7.5% of bridges rated structurally deficient and mostly
below standard, with many elements approaching their end of service life. Furthermore, more than 30%
of the approximately 617,000 highway bridges in the US need immediate attention due to deteriorating
conditions [2].

During recent decades, ensuring life safety and the need to reduce inspection costs have emerged
as the top priorities for practicing engineers and researchers. Therefore, the significance of cost-effective
structural health monitoring (SHM) to ensure long-term structural integrity and safety levels has
been highlighted on many platforms [3–7]. Various types of emerging SHM methods have the
potential to streamline periodic inspections and minimize the direct and indirect costs that are
associated with undesired failure of aging infrastructure in addition to conventional inspection and
non-destructive evaluation (utilizing impact echo, ultrasonic surface wave, ground-penetrating radar,
electrical resistivity, etc.) techniques [8]. At the center of any SHM method and application lies
sensors and sensor data (observable response). Recent advancements in sensor and communication
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technologies (contact and contactless, wired and wireless, etc.) have created opportunities for the
acquisition of observables at an unprecedented rate and amount. Furthermore, advancements in other
supporting hardware and software have been exploited in various forms. For example, a major focus
has been on the development of new technologies to efficiently maintain the infrastructures while
using potentially viable alternatives, such as unmanned aerial systems (UAS). Current UAS research
focuses on fully autonomous multirotor platforms that can hover for extended periods and carry a
wide variety of sensors to enable SHM tasks. Such sensors may include high-resolution cameras for
visible-spectrum light, as well as infrared and near-infrared cameras, LIDAR systems, radar, and sonar.
A team of drones could inspect a bridge for defects with minimal or no management from humans on
the ground [9].

The limitations on sensor measurement capabilities and challenges in deploying sensor networks
due to power and data communication requirements have historically hindered the deployment of
dense sensor arrays on civil infrastructure. Large amounts of heterogeneous data are becoming available
from different types of sensors, as these limitations have been overcome. However, conventional
SHM methods that rely on validated multi-physics models may generally not be suitable for effective
health monitoring utilizing large sensor datasets. Fortunately, advances in data-driven techniques
revolutionized data collection and interpretation. Unlike the traditional physics-based SHM models,
data-driven models offer bottom-up solutions that include diagnosis and prognosis that include damage
detection and remaining life estimation, respectively [10]. In addition, the traditional physics-based
models require the least noise in the measured data, which is not possible when considering the nature
of structures and working conditions. Consequently, data-driven models have demonstrated versatility
and become the most attractive approaches in SHM [10,11].

Deep Learning (DL) is considered as a sub-branch of machine learning (ML), and its applications
in dealing with large amounts of data have been successfully demonstrated on many platforms. The DL
models can capture and learn information that is hidden in the data to predict different patterns
via stacked blocks of layers that form the DL skeleton [10,12]. Fortunately, the advances in parallel
computation, along with the development of DL [13], DL-based models have been successfully used in
several applications in a wide range of research areas, including computer vision, speech, and audio
recognition, and SHM. The main reasons for such significant attention toward DL-based SHM can be
summarized, as follows:

Advances in Big Data and cloud-based computation: the cost of sensors has decreased
significantly, while the cost of materials has been increasing in recent decades, which makes it possible
to deploy large numbers of sensors in host structures and transfer data wirelessly to cloud-based fast
computers. Similarly, the cost of portable devices and cameras has reduced, which makes it feasible to
access and monitor parts of large-scale infrastructures through autonomous systems [14].

Advances in computer hardware and software: multi-core processors have dramatically
improved during the last decade and, accordingly, there has been significant attention towards
the exploitation of the capabilities of graphics processor unit (GPU) for training deep neural networks
with minimum time while using dedicated software packages implemented in NVIDIA, Python,
MATLAB, as well as the online cloud-based platforms, including Amazon and Google.

Advances in Data Science: data is considered as the core component of any SHM application [15].
The term ‘Data Science’ and ‘Data Engineering’ did not exist until a few decades ago, and now it is at
the forefront of data-driven applications in several fields, including SHM. With the recent advances in
ML algorithms as well as data acquisition and data transmission, data scientists can interpret data,
detect abnormalities, or recover lost-data [16].

Advances in Transfer Learning (TL): while the DL-based research and applications are effectively
becoming more widespread, the pre-trained networks, such as VGG [17], AlexNet [18], and ResNet [19],
have been receiving increased attention for SHM-related applications, which has been frequently
proven to be very effective and time-saving.
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This paper provides an overview of frontier DL-based studies that made significant contributions
to SHM until recently. The main goal of this review is to present the relative findings of the latest
studies in SHM and assist researchers in this field with a condensed source of references that are
related to novel DL-based SHM methods. The peer-reviewed papers were selected from prominent
databases, including Science Direct, Web of Science, ASCE, Engineering Village, Sage, and Wiley Online
Library. In Section 2, the review begins with the introduction of DL and outlining the main concepts.
Sections 3 and 4 review the recent application of DL techniques to vibration- and vision-based SHM,
respectively. Applications of unmanned aerial vehicles (UAVs) and Smartphones as the new generation
of devices that facilitate data acquisition, monitoring, and identification of damages are explained
in Section 5. In Section 6, the Transfer Learning and the popular pre-trained networks in SHM are
described. In Section 7, the explanations regarding data science as a necessary tool for data-driven
SHM are presented and a comprehensive list of recently utilized datasets is reported. In Section 8,
popular software applications for DL-based SHM is reviewed. Finally, Section 9 is provided to list the
prospects as the big picture and highlights the main points of the paper.

2. From Shallow to Deep Learning: An Overview

Machine learning (ML) is a subcategory of artificial intelligence (AI). The goal of ML techniques is
to develop trainable algorithms that are capable of learning from available measured or simulated
response data, so that future predictions can be made [20,21]. The scope of ML methods is generally
much broader in computer science than other engineering fields; however, only relevant aspects in
SHM applications are discussed in this review. ML-based SHM models are mainly designed with the
ability to learn by themselves and, from this point of view, DL can be considered as a feature-learning
tool and a subset of ML [10,22].

ML-based SHM models can be categorized as supervised, unsupervised, or reinforcement learning.
In supervised learning, an ML model can be trained whlie using a set of training data with labeled target
values. If the outputs of the model are discrete or categorical variables, the model is known as a classifier
(e.g., support vector machine, k-nearest neighbor, Bayesian method, decision trees, as well as deep
learning); otherwise, the model performs regression (e.g., neural networks, decision trees, linear and
nonlinear regression) [20,21]. The methods that are classified as unsupervised learning, cluster datasets
without explicit training procedures. Hierarchical clustering, partitional clustering, k-means, spectral
clustering, etc. are examples of clustering methods [22]. On the other hand, in reinforcement learning,
the ideal performance is determined through agents, by try and error, which leads to maximizing
the so-called reward. The performance limitations for traditional ML methods, such as designing
and pre-selection of appropriate features, can be eliminated through DL. It is noted that the use of
conventional models requires knowledge and experience for designing features for a specific SHM
applications, which is not always practical as the monitored systems become more complex (e.g.,
due to highly nonlinear behavior), the implementation of conventional models requires knowledge
and experience for designing features, which is not always practical [10].

On the other hand, the DL-based SHM methods aim to develop fully automated feature extraction
and hierarchical representation mechanisms from the raw input data through stacked blocks of deep
neural network (DNN) layers with nonlinear mappings [23,24]. Each layer in a DNN is responsible for
learning a new representation of the input response data and, thus, DL-based SHM is an end-to-end
system with no requirement for human intervention for designing features. Therefore, all of the
feature extraction, pattern classification, and regression parameters are simultaneously designed [10],
which makes DL-based SHM applicable to a wide range of problems with minimum knowledge about
the specific features.

Figure 1 depicts the aforementioned contrast between conventional and DL-based SHM.
In conventional data-driven SHM techniques: (1) expert knowledge is required to design the features;
(2) a step-by-step training procedure is required; and, (3) trained models are generally less efficient
for large-scale structures and may not be suitable for vision-based SHM applications. On the other
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hand, for the DL-based SHM: (1) training procedure has an end-to-end structure and features are
automatically extracted; (2) hyper-parameters are trained simultaneously; and, (3) trained models are
suitable for large-scale structures and efficient for vision- and vibration-based SHM while dealing with
compressed or big data.
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Figure 1. (a) Conventional data-driven SHM vs. (b) Deep learning-based SHM. Figure 1. (a) Conventional data-driven SHM vs. (b) Deep learning-based SHM.

Various alternative DL models have been recently proposed, such as Deep Convolutional
Neural Networks [25], Deep Boltzmann Machines [26], Deep Belief Network [10], Recurrent Neural
Networks [27], Auto-encoders [28], and Generative Adversarial Networks (GANs) [29], etc. The number
of new ML algorithms has been increasing; however, a mind map of the frequently used algorithms,
including deep learning (shown in dark shaded color), are presented in Figure 2.

Inspired by the significant advances in computer vision, researchers have recently attempted
to solve civil engineering problems by adapting the vision-based deep learning methods. DL-based
SHM techniques have been used for: general SHM [30], multi-level damage detection [23], corrosion
detection [31], concrete surface bughole recognition [32], concrete crack detection [33], pavement
crack detection [34], acoustic emissions source detection [35], etc. One common objective of these
proposed approaches is to avoid traditional visual inspections by providing modern, economic,
safe, fast, and autonomous methods that are suitable for any type and scale of structures [3,36,37].
Several disadvantages have been reported for direct methods in image-processing for crack detection.
The main problem with the majority of the algorithms in the available literature is that the models
are custom-made for certain datasets, which may have lower performance in real-world applications
due to challenging circumstances that involve weather, temperature, camera position and quality,
shadow and light, etc. [38]. In addition, such approaches highly depend on the selected pre-processing
methods, including edge detection.

The following sections present the state-of-the-art applications of DL in SHM to provide a baseline
for future studies. Investigations with similar goals and tools are compared in terms of model
architecture, datasets, as well as their performance.
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3. Vibration-Based SHM through DL

Numerous vibration-based damage assessment methods have been developed with particular
applications in SHM while using ML techniques. DL has introduced new horizons in vibration-based
data-driven SHM for large-scale structures and facilitated the acquisition and processing of large sets
of data from different types of sensors [3,4,39]. Most of the conventional methods to localize damage,
such as radiography or ultrasonic methods, require prior knowledge of the approximate location of
damage [36,40,41]. Identifying candidate damage locations can be time-consuming, costly, and difficult.
However, the vibration-based methods are founded on the premise that damages (physical changes)
cause corresponding changes in vibration characteristics (especially modal shapes, frequencies, and
damping) [40], and they may be used to identify the location of damage from measured response data.
Kong et al. [42] provide a detailed review of these techniques.

In general, vibration-based methods can be classified into two broad categories, namely
model-based (parametric) and non-model-based (non-parametric). Model-based techniques usually
require computational models and associated assumptions about the structural system as one key
element. They usually yield good accuracy, but, in real-world applications, the essential and accurate
information about the structural system might not necessarily be available. The difficulties in
developing reliable computational models lead to the next category, so-called, non-parametric methods.
These methods essentially perform post-processing of response (sensor) data to identify damages
without any prior assumption regarding the structural system.

ML techniques contributed to both of these categories. They are usually used to extract the modal
parameters in the scope of non-model-based methods [43,44]. The traditional ML methods involve
two phases in non-model-based methods. The first phase is feature extraction, in which sensor data
(e.g., acceleration) are used to extract effective features, thereby eliminating the cumbersome manual
feature extraction process. The second phase is a classification procedure that identifies the location
and/or level of damage [45]. Support Vector Machines (SVM), Probabilistic ANNs (PNN) [46–48],
Fuzzy ANNs (FNN) [49], and Extreme Learning Machine Networks (e.g., online sequential) [50] are
some of the popular methods that are used for vibration-based SHM.

Abdeljaber et al. [51] presented an approach for damage identification while using output-only
response data. Training data were generated for various simulated damage (loose bolt) cases from
measured acceleration response. After training separate CNNs for each damage case, the probability
of damage (PoD) indicator was defined. Examining undamaged, single damage, and multiple damage
cases, it was shown that specific cases were accurately identified with a 0.54% average error. In a similar
study, three-dimensional wireless sensors were used to record the acceleration response [52]. However,
this approach required a large amount of response data that were associated with various permutations
of loose connections that rendered the application impractical. Abdeljaber et al. [53] introduced a new
approach that only required two states of damage, namely undamaged and fully-damaged cases, in
order to alleviate the drawbacks. The computational procedure was similar to the previous investigation,
but this method could only determine the general condition of the structure. Lin et al. [54] trained a
CNN simulating FE model of a simply supported beam and considering noisy and noise-free states.
It was demonstrated that the response frequency bands, vibration modes, and their combination were
learned by a deep neural network as essential characteristics that were identifiable from sensor data.
Wang and Cha [55] proposed an unsupervised method using an acceleration signal that was obtained
from an intact laboratory-scale three-dimensional (3D) steel bridge. The response signal vectors were
normalized, and then the continuous wavelet transformation (CWT) and Fast Fourier Transformation
(FFT) were applied, which were then fed to a two-dimensional (2D)-CNN autoencoder to extract
essential features. Ten One-Class Support Vector Machines (OC-SVM) were used as novelty-detectors
corresponding to the sensors. The location of sensors with the highest novelty rates was considered to
be the approximate location of loose-bolt damage. Wavelet packet transform (WPT) of vibration signals,
as well as vision data, are efficient in damage localization, according to the studies that were conducted
by Pan et al. [20,21] and Pan and Yang [56]. A parallel configuration of CNN (Figure 3) can be used
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for a robust damage localization and damage intensity estimation, where the time-domain data are
processed using the one-dimensional (1D) CNN (upper branch) and the time-frequency-domain (WPT)
or vision data are processed using 2D CNN (lower branch), and the feature maps are concatenated in
the end for classification or regression. Details of the CNN configuration in Figure 3 are available from
Azimi and Pekcan [57].
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Bao et al. [30] proposed a framework for anomaly detectiosn that is inspired by human vision and
thinking. First, the measured acceleration response data were transformed to grayscale and then fed
into deep convolution neural networks (DCNNs) after manual labeling. The method reached a global
accuracy of 87.0% for one-year data testing that can be used for real-time SHM, alarming systems,
and off-line assessment. Tang et al. [58] enhanced this method by working with different forms of
response data. First, two images of time and frequency domains were stacked with, respectively,
red and green channels into dual-channel images. In contrary to the previous work using imbalanced
data (i.e., with the unequal number of samples for different classes), herein data were balanced and its
impact was investigated. The method achieved 93.5% accuracy and outperformed the former approach.
Wu and Jahanshahi [59] presented a study on the application of CNN for linear and nonlinear structural
dynamic response estimation and identification. They examined single- and multi-degree of freedom
systems and indicated that, in some cases, trained convolution kernels and convolution layers can
be interpreted as numerical integration or dominant frequency extraction operators, respectively.
Furthermore, they compared the results that were obtained by the MLP technique with CNN and
showed that the latter approach is more accurate and robust against noise-contaminated input data.
Oh et al. [60] proposed a CNN model to estimate the response of tall buildings under wind excitations.
They showed that integration can be approximated by convolutional layers without a max-pooling
layer. They provided a physical interpretation of the trained convolutional layers indicating their
ability of noise filtering, eliminating irrelevant information, and preserving the dominant frequency.
Recently, Khodabandehlou et al. [61] applied 2D CNN for the overall assessment of concrete bridges
while using shake-table tests of a one-fourth scale highway bridge. They implemented a 2D CNN for
damage classification that was trained using 40 sets of experimental acceleration records and tested
on eight new sets. Four system-level damage states namely intact, minor, moderate, and extensive
were quantified and accurately predicted by the proposed model. Li and Sun [62] applied CNN to the
damage detection of an experimental cable bridge model, which compared the performance of CNN
with those of random forest, support vector machine, k-nearest neighbor, and decision tree methods
showing at least 15% outperformance in the accuracy.
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In general, these methods demonstrated that CNNs require a large amount of data for training.
These necessary data can be generated from finite element (FE) simulations, or from the measured
response (acquired via sensors when available). In FE simulations, an exhausting amount of response
data associated with different damage states can be easily generated, which yields accurate and
high-level damage identification subject to the accuracy of the simulation models. In other words,
it should be taken into consideration that these data differs from the recorded sensor data because of
the uncertainties and noise. The recorded response data are usually utilized for level 1 (presence of
damage) identification through an unsupervised scheme. Pathirage et al. [63] introduced an approach to
remove these drawbacks based on autoencoders. The first-order sensitivity-based method was used for
matching the FE model and the real model [64]. Subsequently, the calibrated FE model was utilized to
extract frequencies and mode shapes as training data. They proposed a two-step framework comprising
dimension reduction and relationship learning DNNs. In the first step, a deep autoencoder was used to
extract salient features and its outputs fed into a damage identification network. A pre-training scheme
was used to find the optimal weights. They considered the uncertainty effect in the FE model as well as
noise. It was shown that the proposed approach was more accurate than the traditional ANN. Pathirage
et al. [28] added a pre-processing stage and introduced a three-step method with data pre-processing,
sparse dimensionality reduction, and relationship learning steps. This framework was similar to the
former method and it demonstrated efficient and acceptable performance. Recently, Teng et al. [65]
similarly utilized the simulation data of modal strain for training a CNN and verified its performance
while using experimental response data from a steel frame. They achieved 100% accuracy in damage
localization of several single- and multi- damage scenarios. In most of the studies, the geometric
location of sensors was not considered in the input data structure. Providing a solution to feed this
information is of sufficient importance to influence accuracy. For this purpose, Sajedi and Liang [66]
developed a grid environment methodology for the real-time damage segmentation in large scale civil
infrastructures. They used a fully convolutional encoder–decoder neural network that was trained by
cumulative intensity measures as the input and damage states of nodes as output. Their proposed
approach yielded global accuracies of 96.3% and 93.2% for the detection of damage location and
severity in a FE model, respectively.

Several researchers attempted to employ other types of sensor data or use alternative features
since the acceleration response signal is highly prone to noise. Li et al. [67] collected deflection data
of a scaled-down model bridge through a fiber-optic gyroscope. They fed these data as input to a
1D-CNN to classify its damage as four classes comprising an intact class and other three damaged
states. They examined the performance by cross-validation and demonstrated that the CNN had at
least 15.3% accuracy advantage over other traditional techniques, such as random forest, support
vector machine (SVM), k-nearest neighbor (KNN), and decision trees (DT). Lopez-Pacheco et al. [68]
proposed a new frequency domain convolutional neural network (FDCNN) for damage identification
based on the Bouc–Wen hysteretic model to increase robustness against noise. The FDCNN utilized
spectral pooling operator, attenuated the noise in measurements, and was trained four times faster
than similar time-domain networks. Moreover, it was demonstrated that energy dissipation could be
captured by FDCNN, which allowed for higher diagnosis accuracy.

Hung et al. [69] developed a hybrid framework combining 1D-CNN and Long-Short Term
Memory (LSTM) network for damage detection. This network directly receives raw time-series data
and determines the presence of damage. It was shown that, with a low level of noise, the proposed
network could provide accurate detections. Ding et al. [70] created a sparse Deep Belief Network
(DBN) based on Restricted Boltzmann Machines (RBM) and trained by incomplete modal data that
were extracted from FE simulations. The introduced network could successfully predict the damage
location and severity with acceptable accuracy, even in multi-damage cases and in the presence of noise.
Although their method showed better performance than swarm intelligence techniques, it is noted that
the latter techniques require fewer finite element simulations and they are able to adapt to different
types of structural systems. Therefore, instead of directly identifying the damage attributions, DNN can
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be used for other purposes, such as denoising, to enhance the performance of other available techniques.
Fan et al. [71] introduced a modified version of Residual Convolutional Neural Network (ResNet) with
dropout, skip connection, and sub-pixel shuffling modules to denoise acceleration response signals.
They tested the trained network on extensively contaminated data that were measured from a TV
Tower and observed that the suggested approach could successfully identify the modal properties of
the structure.

4. Vision-Based SHM through DL

The majority of the conventional infrastructure inspection techniques are based on visual
assessments (i.e., crack existence, location, and width) that rely on experts’ insight and experience,
which may not always be reliable [72]. Besides, such techniques are costly and time-consuming [73].
The vision-based inspections can be performed by inspecting raw images (by human and without
post-processing), by image enhancement or applying basic image processing filters to magnify and
detect edges to accelerate the inspection, and by autonomous image processing tools that require
computers and ML algorithms [74,75].

The main goal of the studies in the computer vision field concerned with information extraction
from image data to automatically recognize the real-world (as visual cortex functions). Such efforts
were initiated decades ago with the aim of detection of edges, and it has been continuously developed to
problems with complex image patterns, such as facial recognition, vehicle, and pedestrian detection [39].
Jahanshahi and Masri [76] showed that morphological operations are not the only techniques in
image processing-based damage detection. Other approaches include: binarization [77], image
correlation [78,79], edge detectors [36,80–82], percolation model [83], fractal analysis [84], etc.

Most of the efforts in computer vision are concentrated in developing end-to-end learning
algorithmswhile using artificial intelligence, particularly through DCNNs that was capable of achieving
more than 95% of accuracy on image-based classification problems [85]. In addition, the application of
CNNs has been extended to pixel-level labeling within an image to detect and localize different objects
of interest while using nonlinear filters and feature maps [27]. The recent advances in computer-vision
have brought more attention to such technologies in SHM as one of the most effective tools in
the non-contact assessment of deflection [86,87], corrosion [88], concrete spalling [89,90], concrete
and pavement cracks [33,91,92], fatigue detection [93], and surface and subsurface damages [94,95].
Dorafshan et al. [96] carried out a comprehensive study to discuss the performance of vision-based
image processing techniques in SHM, which employ artificial intelligence.

4.1. Crack Detection through Vision-Based DL

Infrastructures, particularly aging concrete structures, are prone to the formation of cracks due
to changing loading conditions, corrosion, etc. Cracks in concrete or road pavements usually appear
as lines with random orientations and intensity. Usually, these lines are darker and connected, and
a simple crack detection can be carried out while using properly prescribed thresholds. Generally,
two approaches have been used by researchers in vision-based SHM, particularly in crack detection,
the image binarization method [97], and the sequential image processing method [83]. Binarization
techniques for transforming images into black and white pixels, or cracked and sound pixels, [98],
as well as mathematical morphology [99] can facilitate and improve the accuracy of the detection
process due to the nature of cracks.

Prior to the introduction of DL in crack detection, the traditional approaches have been using
pixel groups with similar color levels. The earlier generation of heuristic methods for vision-based
crack detection in concrete structures was based on edge detection algorithms by applying filters,
such as Roberts, Prewitt, Sobel, and LoG (in the spatial domain), or Butterworth and Gaussian (in the
frequency domain) [100]. Figure 4 compares the results of applying different filters for detecting cracks
on a concrete surface.
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Figure 4. Concrete surface crack detection using different edge detection filters.

Abdel-Qader et al. [80] showed that the fast Haar transform has higher accuracy (86%) as
compared to the other filters, such as Canny and Sobel, with 76% and 68% of accuracies, respectively.
The image dataset that was used in this study, as well as the classification criteria, were further
improved by Dorafshan et al. [96]. In general, major ML-based problems include three techniques:
classification, localization, and segmentation. Figure 5 illustrates the frequent crack detection
approaches: classification [25], object localization [23], and pixel-level segmentation [101]. Using the
classification method, the dataset is labeled as cracked, non-cracked (sound). In the crack localization
method, the cracks within each input image are labeled with bounding boxes. In the pixel-level
segmentation method, the pixels are classified as cracked and non-cracked [102].
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Figure 5. Illustration of (a) crack and non-crack image classification, (b) object localization, and (c)
pixel-level segmentation (open-access images from Yang et al. [101]).

Dorafshan et al. [96] discussed a comparison of different edge detection methods and performance
of different filters. Based on ANN-based image processing methods, several researchers highlighted
potential applications of autonomous crack detection techniques. Jahanshahi and Masri [103] proposed
ML-based models using SVMs for concrete crack detection, based on morphological features. The crack
width was measured by identifying the centerline of cracks in their study. Using the abovementioned
techniques, an automated vision-based crack detections framework was proposed by Yeum and
Dyke [104] for bridge inspection.

Only a limited number of studies have attempted to compare the performance of recently
developed crack detection methods by other researchers [96,97,105]. In addition, most of the recent
studies have not clearly described the accuracy and classification criteria, including true positive (TP)
metrics for reproducibility of the results. Furthermore, a comparison of several studies from a broadly
different range of datasets [106], as well as comparisons using small datasets or the idealized datasets
that were collected in laboratory conditions [96] do not reflect the merits of one method over another.
Dorafshan et al. [37] and Talab et al. [83] proposed an automatic crack detection using the OTSU
threshold [107] and image filtering. Such methods were later improved by implementing terrestrial
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laser scanning, which has three main steps: shading correction, crack detection, and mapping [108], and
could be implemented in an automated manner using robotic systems yielding up to 95% accuracy [109].

Deep CNNs have been consistently developed by researchers in the computer vision field;
Rawat and Wang present more details regarding the background of the CNN developments in image
classification [110]. Following such significant achievements, several studies adapted CNN to detect
surface and subsurface cracks in pavement and concrete. Earlier studies used DCNN to classify
concrete or pavement surfaces by sliding-window method, but, recently, semantic segmentation through
an end-to-end pipeline using fully convolutional networks (FCN) has attracted attention [111,112].
This approach has been employed to tackle challenging classification problems in different fields,
including SHM. Recently, Chen and Jahanshahi [113] developed an enhanced CNN-based crack
detection method while using a Naïve Bayes data fusion scheme for the extracted data from video
frames. Kim et al. [73] proposed a faster CNN-based model to determine pixel-wise location while
using image binarization.

Detecting cracks in tunnels is of vital importance. They might be a potential sign of a hidden
danger that can pose serious threats to users or even become a trigger to the catastrophic collapse.
On the other hand, identifying tunnel cracks is challenging, because there are many noise patterns in
the tunnel images. Therefore, developing automated accurate methods for monitoring their surfaces
can effectively enhance safety and decrease the potential costs. Li et al. [114] created a database of
60,000 tunnel crack images for training, testing, and comparing different crack segmentation networks.
According to their study, by introducing clique block and attention mechanisms into U-net, it can
significantly outperform basic U-net, fully convolutional networks (FCN), SegNet, and multi-scale
fusion crack detection (MFCD) for detecting cracks in tunnel noisy images.

Soloviev et al. [115], Li et al. [116], Tong et al. [117], and Fan et al. [118] demonstrated the use of
DCNNs to detect and recognize cracks as defects with quantifiable properties in applications for crack
detection on pavement surfaces (e.g., crack length and size). Fan et al. [119] proposed a CNN-based
multi-label classifier by improving the positive-to-negative ratio of samples. In another study by
Wang et al. [120], they proposed a CNN model with three blocks of convolutional layers followed
by two FC layers, consisting of 1,246,240 trainable parameters in total, which could detect surface
cracks from the subdivided images of asphalt pavement. Tong et al. [117] developed another two-stage
CNN-based model to also detect asphalt pavement crack length. A fast pavement crack detection
network (FPCNet) was developed by Liu et al. [121] using encoder-decoder configurations.

The majority of studies in the literature validated the performance of DL models implemented in
laboratory conditions with image datasets of intact and cracked surfaces, which still has limitations
in addressing the real-world conditions. The acquired surface images may be contaminated with
noise, shadow, dust, or extra brightness, which requires more robust and intelligent techniques for
classification. Depending on the applications, such practical challenges have been addressed in several
studies. Kim and Cho [122] defined a five-class crack detection problem using a large volume of images
collected from the Internet as well as their augmentations. Their study considered field conditions
to tackle real-world limitations that are associated with several uncertainty factors, as well as the
inability in employing contextual information, such as the nature of materials, structural components,
and the region of interest (ROI). Cha et al. [25] discussed the feasibility of autonomous DL-based
methods for crack detection, and Cha and Choi [123] proposed CNN-based classifiers and applied a
sliding window method on 256 × 256 RGB images of concrete surfaces to detect cracks. Their proposed
methods achieved an accuracy of 97% for concrete image datasets when considering different light
intensities associated with variable weather conditions. An et al. [124] developed a DL-based crack
detection method using hybrid images of combined vision and infrared thermography of macro-
and micro-cracks. They observed that the hybrid images made the network robust against varying
operational conditions such as shadow, dust on the surface, rust, etc. Moreover, they developed a
sticking-type UAV that can be utilized in the inspection of large reinforced concrete civil infrastructures.
Jang et al. [125] devised a ring-type robot for crack evaluation of circular bridge piers in a controlled
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manner. This robot provides fast scanning and high-quality raw images for crack detection. Feeding
these images, they trained a CNN that was able to precisely segment the crack maps on the piers.
The proposed system could identify images with 97.47% recall and 90.92% precision, according to the
experimental results.

In typical region-based classification, or object detection, a bounding box is created around the
region of interest (e.g., cracks, spalling, components, etc.) [96]. For example, Ali et al. [126] proposed
a modified cascade face detection method that uses the Viola–Jones algorithm for crack detection
on concrete walls while using bounding boxes around the region of the crack. This method was
modified by Ramana et al. [127,128] to automatically detect loosened bolts in steel structures with
higher efficiency when compared to the earlier studies using hand-crafted features [129].

Yeum et al. [130] used region-based CNNs (R-CNN) for post-event evaluation of buildings with
an accuracy of nearly 60%; however, this technique requires further developments to also include
multiple damage scenarios. Xu et al. [131] proposed a fast R-CNN approach to detect different damage
types in concrete structures as well as damage locations using bounding boxes. Fast R-CNN and Faster
R-CNN were developed by Girshick [132] and Ren et al. [133], respectively. Another newly-developed
region-based segmentation technique is Mask R-CNN [134] that segments images into objects, which can
be used for crack detection, concrete spalling, and rebar detection. Cha et al. [23] proposed a faster
R-CNN for detecting multiple damage types, and developed the method to localize multiple damage
types, including steel and bolt corrosion and delamination. One of the main drawbacks of the
regular CNN approaches for detecting cracks is their deficiency in specifying out-of-plane cracks.
Deng et al. [135] recently embedded deformable modules into various R-CNN and fully convolutional
networks to overcome this drawback. When comparing the suggested technique with regular networks,
they observed that the modified approach not only improves the detection accuracy of out-of-plane
cracks, but also enhances the accuracy for other cases.

Other studies proposed pixel-level classification methods [33] to provide more precise information
regarding the path and intensity of cracks. In most of the published research, the binary classification
problems include distinguishing ‘crack’ and ‘non-crack’ regions or pixels. For more precise classification,
Dung and Anh [33] proposed semantic segmentation to also identify path and density,. The typical
object detection models attempt to fit a bounding box around the ROI [85], and semantic segmentation
methods [136] or pixel-level classification [101], should be used to precisely delineate damage level,
shape, and location. For pavement crack detection problems, Zhang et al. [27,137] proposed CrackNet,
an efficient model based on R-CNNs. Xu et al. [93] developed a DL-based fatigue crack identification
technique for long-span steel box girder bridges using deep CNN, as well as a framework for steel crack
detection while using restricted Boltzmann machine with high accuracy [138]. Hoskere et al. [139,140]
proposed a pixel-wise DCNN with a parallel configuration and a fully CNN (FCN) to localize and
classify different damages, including concrete cracks, spalling, exposed rebars, corrosion, fatigues
cracks, and asphalt cracks.

4.2. Structural-Component Recognition and Change Detection through Vision-Based DL

It is essential to perform a global-level inspection, as well as the structural component recognition
process, before moving closer to the details, to understand the relationship between damage and
safety of structures [86]. However, recent studies in DL-based SHM have not fully addressed this
concern. Even the video-based crack detection models do not interpret the impact of damage in a
global context. Yeum et al. [141] proposed a CNN-based technique to classify civil infrastructure
images by recognizing regions of interest. Gao and Mosalam [142] used similar object-detection
techniques to classify structural components as well as damage types. A Faster R-CNN algorithm
was used by Liang [143] to automatically detect structural components of the RC bridge system using
boundary boxes.

Narazakia et al. [144] used both global and close-up views to train two recurrent neural networks
(RNNs) while using a single image-based pre-trained FCN for structural component recognition from
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video image data. The simple RNN and ConvLSTM units in their models could learn memories of the
focus region of the video. The ground-truth labels for the video frames of flying UAV were synthetically
created using a game engine [85]. Their overall goals were associated with the recognition, localization,
and structural component classification from complex scenes. Each input image is automatically or
semi-automatically down-sampled using convolutional layers and then up-sampled to generate the
segmented image that is similar to the ground truth, as shown in Figure 6.
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Alcantarilla et al. [145] proposed street-view (ground-level) change detection using
deconvolutional networks. Using a CNN model, Stent et al. [146] proposed a change detection
method for tunnels. The main assumptions in these studies were that the cracks are connected slender
and darker lines on concrete surfaces [83].

5. Applications of UAVs and Portable Smartphones for DL-Based SHM

Deep learning networks facilitated the damage identification task by automating the process
and achieving acceptable levels of accuracy. However, in some cases, inspectors do not have access
to all parts of structures to acquire image data (for vision-based approaches) or sensors data (for
vibration-based methods). This is one of the main difficulties in structures, such as tall buildings,
bridges, and heritage structures [147]. Drones were proposed as tools for inspecting such structures
to overcome these difficulties [148]. Drones, Unmanned Aerial Vehicles (UAVs), or Unmanned
Aerial Systems (UASs), are classified based on their level of automaticity, size, and other capabilities.
They minimize the need for physical labor in addition to being time-saving, cost-effective, safe,
available, and accurate. In recent years, different studies have been conducted in order to provide
a framework for using UAVs, showing their applicability and address some of their disadvantages.
When considering the rapid developments in drone industries, nowadays, utilizing intelligent UAVs
for wireless data acquisition is not considered as a future technology.

The main developers of UAVs for bridge and other structural inspections are the departments
of transportation (DOT) and the universities in the USA [85,149–152]. Along with the developments
in wireless data transmission techniques, several studies have been conducted that utilized UASs
technologies to broaden vision-based inspection in SHM [14,153,154], as well as vibration-based
techniques [155].

Since DL-based SHM is an emerging technology, the capability of UAVs for robust real-time
evaluation is still a challenge. Kim and Cho [122] demonstrated the feasibility of UAV-based inspection
of a concrete retaining wall. They analyzed videos (two frames/second) that were recorded from
approximately 2m from the concrete surface. By embedding image processing and computer vision
systems in UAVs, instant crack detection tasks could be safely done with minimum costs and maximum
greater accuracy [156]. For example, Jang et al. [157] mounted a hybrid image scanning system (HIS)
combining the laser thermography cameras and vision sensors in order to detect concrete cracks.
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For bridge inspections, Kim et al. [158] deployed a high-resolution camera on a commercial
UAV to collect images for crack detection and generating damage map of a concrete bridge.
Kang and Cha [14,159] developed an autonomous UAV system for SHM while using ultrasonic
beacons to replace the role of GPS that performs poorly in partially covered places, such as under bridge
decks. In addition, Huynh et al. [160] used a UAV for the quasi-real-time inspection of connection bolts
on a full-scale girder bridge. Dorafshan et al. [75] examined the performance of different UASs for
detecting cracks in steel bridges and concluded that instability in GPS-denied and windy environment
might pose major challenges for UAS-assisted inspections.

UAVs were also employed to create image datasets for masonry heritage structures [161].
The images collected by UAVs are sometimes noisy or have relatively low contrast; in addition,
the unavailability of GPS signals in indoor environments or under bridges interrupts their
performance [162]. Duarte et al. [163] discussed the performance of the networks when
considering multi-resolution images derived from satellite, manned, and unmanned aerial vehicles.
Hoskerre et al. [140] proposed a framework to convert UAV data to DL-based condition-aware models
for automating and accelerating post-earthquake inspections. They trained three networks for building
information, the presence of damage, and the types of damage. Moreover, they suggested an
approach for modal identification of the structures while using videos recorded from different parts
of a structure through a divide and conquer strategy [164]. Because of the growing attention to
smartphone applications, several studies used them as inexpensive tools for SHM [102]. Images taken
by smartphones have been utilized for the identification of various damages, such as pavements [165],
bolt loosening [160,166], volumetric damages [167], and concrete cracks. Zhao et al. [168] developed a
mobile-based method for measuring the forces in cables of cable-stayed bridges.

Using the framework of Core ML as well as the Xcode, Li, and Zhao [169,170] integrated a trained
CNN model into a developed smartphone application in order to detect the presence of concrete surface
cracks on a bridge with 99% accuracy. Furthermore, using CNN, Wang et al. [171] developed a real-time
efflorescence and spalling detection of historic brick masonry buildings. Based on 99 × 99 RGB images
that were acquired by low-cost smartphone sensors, Zhang et al. [34] developed a deep CNN model
with six convolution layers for automatic crack detection on road surfaces, which was a binary
classification task. Pauly et al. [172] proposed a deeper CNN model to enhance the performance of
CNNs based on the 99 × 99 RGB images. Maeda et al. [173] prepared a large-scale dataset while using
a smartphone that was installed on a car dashboard, which used images to develop an end-to-end
public application so-called ‘RoadDamageDetector’, which classifies different types of road damages.

6. Transfer Learning (TL) through Pre-Trained Models

When the dataset is relatively small and there is a pre-trained network that has already been
trained on a larger dataset, an efficient way is to fine-tune the existing network for the new similar
classification task. Using transfer learning techniques (TL), the training time can be minimized by
transferring the coefficients from the base model instead of starting with randomly assigned weights.
The depth of the network has a direct relationship with the number of training parameters. Therefore,
deep networks require a considerably long time and a large amount of data for training. Transfer
Learning (TL) can alleviate this issue by providing prior knowledge (weights) that was obtained from
a similar problem [174]; therefore, fine-tuning can be carried out with a lower computational cost and
fewer data samples. Figure 7 illustrates four typical TL strategies thatare based on the target data size
in its similarity to the source domain. For a CNN model with convolutional layers in series, followed
by fully connected (FC) layers, a common practice is to fine-tune the last FC layers, or replacing them
with new layers. Therefore, the convolutional layers are frozen and skipped during the training.

The application of TL is an emerging area in SHM, and novel studies are being carried out in
classification problems in vision-based SHM [142]. Pre-trained CNN models can even be used for
new problems with completely different output classes. In pavement crack detection, TL has been
proven to be an efficient approach for improving the accuracy of the classification problem [175].
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For example, Gopalakrishan et al. [176] were able to perform crack detection on Hot-Mix Asphalt,
as well as Portland Cement Concrete, through the TL technique. They used the VGG16 network that
was trained on ImageNet data. Dorafshan et al. [96] compared the performance of a fully trained
AlexNet model with the same AlexNet, but in transfer learning and no-training modes for concrete
crack detection tasks. Perez et al. [177] applied a pre-trained VGG-16 for localization of building
deteriorations that stem from dampness such as stain, peeling, and crazing. Özgenel and Sorguç [178]
conducted a comprehensive study with an emphasis on the dataset size, number of training epochs,
number of convolution layers, as well as the trainability and transferability features of each CNN-based
pre-trained models. Wu et al. [179] designed an efficient DCNN that was developed using transfer
learning (of VGG16 and ResNet18) and Taylor expansion-based network pruning. The network pruning
technique refers to removing the least important neurons and filters of a belief network. They showed
that the proposed approach reduces memory demands and inference time. This technique can be
applied to decrease the need for a huge amount of training data without losing performance in damage
detection. Table 1 provides further examples of TL applications using the popular pre-trained DNNs
for SHM problems. The most popular pre-trained DNNs that have been frequently used for SHM
problems are summarized in the following:

AlexNet: AlexNet [18], one of the earlier DL models, has been developed to classify objects in the
images, and it won the ImageNet [180] classification competition in 2012. It has five convolutional and
max-pooling layers, three fully-connected layers, and a 1000-way softmax output layer (25 layers in
total). When considering the concrete surface cracks as objects, AlexNet can be fine-tuned for crack
detection purposes through transfer learning [96,122]. AlexNet can be loaded to Matlab or Python
using the dedicated toolboxes.

VGG: VGG16 [17] is a deeper version of AlexNet, which itself has six different configurations
namely A, A-LRN, B, C, VGG16, and VGG19. VGG16 and VGG19 are the popular versions with 16
and 19 layers, and 138 and 144 million parameters, respectively.

Inception: the kernel size is related to the distribution of salient information. The large and small
kernel sizes are suitable for global and local distribution of information, respectively. Using different
filter sizes in parallel can resolve the problem of choosing suitable sizes. Different versions of inception
modules, so-called V1, V2, V3, and V4, have evolved iteratively [181].

ResNet: Resnet50 [182] is a deep network that implements residual learning. It was introduced by
Facebook AI Research (FAIR). Although it provides significantly high accuracy, it requires considerable
processing time because of the significant depth of the network. ResNet50 has 50 main layers and 177
in total, and ResNet101 has 101 main layers with 347 layers in total [19].

GoogleNet: GoogleNet was proposed by Szegedy et al. [19]. It has 22 main layers (144 in total)
but 12 times fewer parameters than AlexNet [182]. Using weighted Gabor filters with various sizes
in the inception sparse architecture allows for a deeper and wider network without increasing the
computational budget [183].

ZFNet: ZFNet is the fine-tuned version of AlexNet, which was the Winner of ILSVLC 2013 in
image classification. The Architecture of AlexNet and ZFNet is similar, and the differences are mainly
focused on filter size and stride that resulted in reducing the error rates [184].

CrackNet: the first version of CrackNet (CrackNet I) was developed for crack detection on
three-dimensional (3D) asphalt surfaces with the explicit objective of pixel-perfect accuracy [27,137].
This CNN does not use max-pooling layers and it achieved 90.13% precision and 87.63% recall.
The second version (CrackNet II) enhanced the CrackNet I in terms of robustness against noise and
increasing performance speed by removing the handcrafted feature generation, adding learnable
parameters, and increasing the depth of the network. This CNN achieved 90.20% precision and 89.06%
recall, which are better than the original version [185].
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Figure 7. Four transfer learning approaches based on target domain size and similarity to the source
domain [57].

Table 1. Examples of Transfer Learning (TL) Applications in SHM using pre-trained deep neural
networks (DNNs).

Pre-Trained Network Purpose/Application Researches in SHM

VGG (VGG-16, 19) [17]

• Crack detection
• Mixed reality systems
• Bolt loosening detection
• Corrosion detection
• Component recognition
• Steel damage condition assessment
• Post-earthquake assessment

[32,34,102,141,144,145,176,178,
186–194]

Inception (Inception-V2, V3, V4) 1

[19,181,195]
• Crack detection
• Damage detection of historic masonry buildings [33,169,176,196,197]

ResNet (ResNet-20, 50, 101, 152)
[185]

• Crack detection
• Bridge component extraction
• Structural inspection

[33,139,144,171,178,190,191,194,
198–200]

AlexNet [18]

• Crack detection
• Comprehensive maintenance and inspection
• sUAS-assisted structural inspections
• Post-earthquake assessment

[73,96,122,124,143,178,193,196,
201–203]

GoogleNet [19]
• Crack detention
• Post-disaster inspection
• Comprehensive maintenance and inspection for bridges

[143,157,169,178,196,198,202]

MobileNet • Road damage detection [173]

UNet, SegCaps, SegNet [113]
• Segmentation
• Pixel-level crack detection [186,194]

ZF-net [187]

• ZF-Net for fast R-CNN.
• Region-based DL for detecting multiple damage types
• Detection and localization of multiple types of damage
• Comprehensive maintenance and inspection for bridges
• Volumetric damage quantification

[167,203–205]

CrackNet, CrackNet-R [139,188]
• Crack detection
• Pixel-level road crack detection [27,101,194]

1 V denotes the version.
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7. Databases for DL-Based SHM

Data are an essential part of all data-driven techniques in SHM. During recent years, the importance
of reliable data for SHM applications has become obvious along with the emerging DL-based algorithms
that can process and interpret massive amounts of data [15]. To date, no open-access and standard
dataset for DL-based SHM has been published; however, individuals have created datasets generated
under laboratory-controlled environments for limited applications. For example, Maguire et al. [206]
created a database, called SDNET2018, which contains 56,000 images of a bridge deck, wall, and
pavement, which is suitable for DL-based applications. The dataset by Hoskere et al. [139] consists
of images from different types of structures, such as buildings, bridges, dams, pavements, as well
as laboratory tests images. For small size datasets, the augmentation techniques can be applied,
including geometry transformation, color conversion, and adding noise or blurring, which address
the camera position and image quality as well as the light and weather conditions in real-world [122].
More sophisticated techniques, such as a generative adversarial network (GAN), have been used for
data augmentation for structural images [207]. Tables 2 and 3 summarize the vibration-based and
vision-based datasets that have been recently used in DL-based SHM. The goal of the studies, as well
as the nature of the datasets, size, and other characteristics, are also included.



Sensors 2020, 20, 2778 18 of 34

Table 2. Examples of vibration-based datasets for deep learning (DL)-based SHM.

Reference(s) Goal Dataset

Zhang et al. [208] Vibration-based structural state identification 8595, 14,465, and 4800 raw acceleration data (9 Ch. × 10,000) for each of the bridges

Pathirage et al. [28] Damage identification by making a deep mapping between the modal
characteristics and structural damage

20,000 data samples containing the first three frequencies and mode shapes
obtained by Eigen analysis of finite element model

Avci et al. [52] Wireless vibration-based bolt loosening detection 330 signals each containing 245,760 samples of velocity

Pathirage [63] Vibration-based damage detection and finding the stiffness reduction
of elements

Modal information of 10,300 damage cases that include the first seven frequencies
(7 arrays) and the regarding mode shapes at 14 beam-column joints (98 arrays)

Tang et al. [58] Data anomaly detection and classification 10,014 time and frequency response of a long-span cable-stayed bridge stacked in
two channels with the resolution of 100 × 100

Wang and Cha [55] Vibration-based loosened bolt localization 6800 frequency domain 50 × 50 matrices calculated by Fast Fourier Transformation
(FFT) of acceleration signals of a lab-scale bridge

Yu et al. [209] Damage identification and localization of buildings controlled with
smart devices 1900 group of 5 × 2832 matrices of power spectral density

Lin et al. [54] Vibration-based feature extraction for damage detection 459 set of vertical acceleration signals collected from nine nodes in 1024 × 9 matrices

Bao et al. [30] Vision-based anomaly detection and classification in a long-span
cable-stayed bridge 333,792 of acceleration signals plotted in 100 × 100 one channel images

Abdeljaber et al. [53] Bolt loosening localization on a lab-scale steel grandstand simulator 749 × 12 vectors of acceleration signals with 128 × 1 dimension

Table 3. Examples of vision-based datasets for DL-based SHM.

Reference(s) Goal Dataset

Gulgec et al. [210] Robust damage detection and localization of steel connections 30,000 damaged and 30,000 healthy strain distribution matrices in 28 × 56 dimension

Ye et al. [211] Concrete crack detection 14,000 concrete crack images with 80 × 80 pixel resolutions obtained from a concrete beam test

Xu et al. [131] Multi-type seismic damage identification and localization 2400 images with 640 × 640 pixel resolution of concrete cracking, concrete spalling, rebar
exposure, and rebar buckling

Nahata et al. [193] Post-earthquake damage extent identification of buildings 1200 RGB images with 224 × 224 × 3 pixel resolution

Beckman et al. [167] Concrete spalling damage detection and quantification 444 concrete spalling images with the resolution of 853 × 1440 pixels

Jang et al. [157] Detection of micro and macro concrete cracks 20,000 hybrid combining vision and infrared thermography of concrete crack and intact
images with 224 × 224 pixel resolution

Dung and Anh [33] Concrete crack detection, segmentation, and density evaluation A public dataset of 40,000 concrete crack 227 × 227 pixel images

Zhang et al. [166] Real-time autonomous bolt loosening detection 300 tight and loosened bolt images with 224 × 224 pixels

Wang et al. [171,196] Spalling detection for historic masonry structures 500 images with 500 × 500 pixel resolutions
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Table 3. Cont.

Reference(s) Goal Dataset

Dung et al. [189] Crack detection of gusset plate welding in steel bridges 12,896 images with 64 × 64 pixels of cracks and the same number of non-cracks

Liu and Zhang [192] Image-driven low cycle fatigue-induced damage identification for post-hazard
inspection

8259 images with 224 × 224 pixels extracted from a the video was taken during the
experimental test

Ni et al. [198] Concrete thin crack identification and width measurement 65,319 crack and 64,681 non-crack 224 × 224 RGB images for GoogleNet and 60,000 images
for ResNet

Hoskere et al. [140] Rapid and autonomous post-earthquake inspections including identification of
damage presence and damage type

A set of 665 images with 288 × 288 pixels containing post-earthquake damage scenarios such
as concrete cracks, spalling and exposed rebar

Chen [113] Inspection of nuclear power plants and detection of cracks in video frames A total 147,344 crack and 149,460 non-crack 120 × 120 image patches

Liang [143] Post-disaster system-level failure analysis of bridges, the structural
component-level identification, and local-level damage localization 492 number of 224 × 224 RGB images

Zhao et al. [202] Classification the types of bridges, recognition of bridge components and crack
detection

3832 RGB images of an arch, suspension and cable-stayed bridges with 227 × 227 pixel
resolution and 60,000 intact and cracked concrete RGB images with 224 × 224 pixel resolution

Gao et al. [142,212] Component type, spalling condition, damage level, and damage type
determination. 2000 images with a size of 224 × 224 RGB (Structural ImageNet)

Dorafshan et al. [203] Autonomous inspection of concrete structures using Unmanned Aerial Systems
(UASs)

9011 227 × 227 pixel images of lab-made bridge decks including 1471 cracked and 7540 intact
cases taken by Nikon camera

Suh and Cha [204] Damage type detection and localization 2366 images of concrete cracks, steel delimitation, corrosion, and bolt loosening with a size of
500 × 375 pixel

Wang et al. [196] Damage type identification (intact, crack, efflorescence, and spall) and
localization for masonry historic structures

5145 stretcher and header brick images with 480 × 105 and 210 × 105 pixel resolutions
respectively

Kim et al. [72] Determining the existence and location of cracks from surface images
considering crack-like noise patterns

3186 images crack and intact surfaces with different distances between the camera and 227 ×
227 pixel

Silva et al. [213] Automated inspection of concrete structures and crack detection 3500 sample of concrete surface images of 256 × 256 pixels with and without cracks

Dorafshan et al. [96] Image-based crack detection in concrete structures 18,000 concrete panel images with the size of 256 × 256 pixel simulating reinforced concrete
bridge decks

Sharma et al. [214] Image-based detection of the crack presence 15,600 crack and non-crack 28 × 28 RGB image patches

Li and Zhao [169] Crack detection of concrete surfaces real concrete surface RGB images with 224 × 224 pixel resolution and taken by a smartphone

Kang and Cha [14] Autonomous UAV method using ultrasonic beacons for damage detection and
localization 40,000 cracked and intact concrete surface images with 256 × 256 pixel

Yang et al. [101] Semantically identification and pixel-wise segmentation A collection of 800 images of various cracks with 224 × 224 pixel

Kim and Cho [122] Crack detection on concrete surfaces 7195 images of cracks, joints, edges, plants, and intact surfaces with 227 × 227 pixel scraped
from the Internet

Beckman et al. [205] Volumetric damage detection and quantification 444 images of concrete spalling with the resolution of 853 × 1440 pixels
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Table 3. Cont.

Reference(s) Goal Dataset

Kumar et al. [215] Automated CCTV inspection of sewer pipelines 12,000 images of cracks, root intrusions, deposits, and in pipelines with the dimension of
256 × 256

Narazaki et al. [144,190,199] Structural bridge components recognition 39,081 images of a concrete girder bridge with a size of 240 × 320

Karaaslan et al. [186] Mixed reality inspection including detection and segmentation of cracks and
spalls 51,300 concrete crack, road damage and bridge inspection images with the size of 300 × 300

Oliveira et al. [216] Damage classification in an aluminum plate 720 frames of 128 × 128 greyscale representation of electromechanical impedance

Li et al. [217] Concrete bridge inspection and estimating the probability of being cracked 326,000 samples of 18 × 18 one channel greyscale patches of concrete cracks and non-cracks

An et al. [124] Autonomous detection of macro- and micro-cracks A set of 20,000 images of crack and intact images 227 × 227 RGB images

Duarte et al. [163] Building damage (rubble piles, debris) classification and assessment from
images such as A total of 12,973 of the satellite and airborne 224 × 224 pixel images

Ji et al. [218] Identification of collapsed buildings from post-event satellite images 613 collapsed and 1857 non-collapsed buildings Post-Earthquake Satellite images with the
resolution of 96 × 96

Kang and Cha [159] Intact and cracked concrete area classification A broad variation of 2304 × 1280 raw images of concrete surfaces

Modarres et al. [219] Crack detection of concrete bridges and composite panels 2400 number of real concrete crack and intact surfaces and 6000 debonded and intact
sandwich panels with a resolution of 96 × 96 pixel

Yeum et al. [141] Classification and localization for visual assessment of connections in a
full-scale truss structure 100,000 images of welded joints with a dimension of 256 × 256

Hoskere et al. [139] Damage localization and classification for post-earthquake structural assessment 1695 images of concrete spalling, exposed rebar, steel corrosion, concrete cracks, fatigue
cracks and asphalt cracks with a resolution of 288 × 288

Nazaraki et al. [191] Pixel-wise bridge component recognition 11,897 urban, bridge and general 180 × 180 images

Atha and Jahanshahi [31] Assessment and corrosion detection on metallic surfaces 67,187 images of regions with and without corrosions with 128 × 128 pixel resolution

Cha et al. [25] Automatic concrete crack detection 40,000 images of cracks on concrete images with a dimension of 256 × 256 pixel
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8. Software Frameworks for DL Applications

Various frameworks have been developed by research centers to perform deep learning tasks.
Table 4 summarizes the most popular ones (Pouyanfar et al. [220]) that continue to evolve.

Table 4. Comparison of popular deep learning frameworks.

Framework Core Programming Language Interface Support CNN and RNN Support

TensorFlow Python, C++, Cuda Python, C/C++, Java Yes

Torch/PyTorch C, Lua Python, C/C++, Lua Yes

Keras Python Python, Matlab Yes

Caffe C++ Python, Matlab Yes

Theano Python Python Yes

TensorFlow: a powerful platform that is developed by Google and dedicated to deep learning
applications is TensorFlow [221]. TensorFlow can deploy multiple CPUs or GPUs while using
the same Application Programming Interface (API), which increased its popularity among the DL
researchers [222]. No framework is superior over the others; however, some researchers compared
the performances on a single GPU, and showed that the TensorFlow might not outperform Theano,
Torch, Neon, and TensorFlow DL frameworks, despite its flexibility [105,223]. On the other hand, it is
faster when Long Short Term Memory (LSTM) units are used as the core of the model [222]. It is worth
noting that TensorFlow can also run models on mobile platforms.

Torch/PyTorch: Torch is a simple, open-source, and extensible DL framework that is dedicated
to building fast and efficient GPU-based ML algorithms [222]. It outperforms CPU-based training
according to Bahrampour et al. [105]. PyTorch is considered to be the primary software tool for deep
learning after TensorFlow, which is developed by Facebook services.

Keras: one of Python’s most popular and high-level libraries in DL that is capable of running on
top of TensorFlow [224]. Keras is extremely user-friendly and, due to the modularity and extensibility
features, it is attractive for both novice and experienced researchers in DL.

Caffe: for computer-vision tasks, Caffe, which is developed at the University of California-Berkeley,
is one of the fastest and easiest platforms to train CNNs with the capability of processing 60 million
input images per day [225].

Theano: originally developed to be used as a CPU/GPU compiler in Python, and not to be a
DL framework, but it is one of the Python libraries for fast numerical computations, particularly
non-standard DL models [105]. For relatively shallow models of CNNs and LSTMs, Theano might
outperform Torch and TensorFlow [105]. Theano is not further developed since 2017.

9. Summary and Prospects

The advantages of machine learning (ML) in solving structural health monitoring (SHM) problems
are evident, and the number of deep learning (DL) applications has grown exponentially since its
introduction during recent years. However, every proposed method has its limitations, and some of
the major challenges are summarized, as follows:

1. Despite remarkable advances since the introduction of DL-based SHM, current techniques in
the literature cannot be considered to be fully automated, and human perception is not easy to
replicate through vibration or vision-based DL algorithms [226]. Such capabilities should be
addressed in future studies, including the significance of damage with respect to the type of
structural components, materials, locations, and other environmental conditions.

2. The number of available image databases of structural systems and other infrastructure
components is very limited for SHM purposes, which leads to lower performance of the available
trained models when new conditions arise, such as texture, joints, light, environment, pollutions,



Sensors 2020, 20, 2778 22 of 34

etc. In addition, environment-related issues cannot be perfectly simulated via generalized
numerical models; therefore, larger datasets can only be formed by acquiring data from the
real world.

3. The nature of damages, as well as their significance, may differ from one structural component to
another when considering the global structural context. Therefore, comprehensive hierarchical
approaches should be devised in which structural component recognition is included as an
essential first step before using image data. Such an approach has the potential to bring context
in the assessment, evaluation, and interpretation of damage as part of SHM applications.

4. Laboratory conditions are idealized in the available studies, and further research is needed for
in-situ DL-based SHM. For example, the presence of wind and light may disrupt UAVs for the
vision-based measurements. A clear example is the dynamic vibrations and deflections of a long
suspension bridge under traffic and wind loads. In addition, damages occur gradually with small
changes [145,146].

Along with the rise of the DL-based methods, the importance of data is more evident than ever
before. Vision and vibration data from host structures both need to be automatically processed and
stored efficiently, which requires robust and real-time signal and image processing models that are
capable of identifying an anomaly in data. Response data compression and response reconstruction [227]
for long-term monitoring purposes remain challenges that require more developments to avoid
information loss. The near-future directions of DL-based technologies can be grouped into the following
categories when considering the limitations and advantages of the recently proposed methods.

9.1. DL Applications in Vision-Based and Vibration-Based SHM

The DL-based damage detection techniques are capable of learning implicit relations between
features with less computational costs. DL-based techniques result in significantly higher accuracy,
despite the conventional ML methods that rely on hand-crafted features. Along with the advances in
computer vision techniques, vision-based SHM is expected to play a pivotal role in the next generation
of SHM. In addition, it has been shown that vibration data can be treated in grid-like images to train
deep CNN models [61], which expands DL applications to solve real-world problems. In addition,
DL models can be used to predict or minimize the response of complex structures without the need for
complex finite element models.

9.2. DL Applications in SHM Using Self-Powered Sensors

During the last decade, wireless sensors networks (WSNs) have been developed as the
best alternative for traditional wired networks. In addition, the development of self-powered
sensors for harvesting energy from the sensed vibrations has recently been in the center of
attention. Such technology has transformed data acquisition and promoted energy-efficient data
interpretation [228]. The majority of the ML-based SHM methods are combinations of hand-crafted
formulas and empirical models, which still depend on the knowledge of the inspector as well as the
capability of computers and algorithms, despite the significant advances in data-driven approaches [22].
As the predominant methods in SHM, ML-based approaches require a large amount of data from the
host structure. The incorporation of wireless networks of self-powered sensors with deep learning
technologies will increase the efficiency and minimize the cost of maintenance through continuous
monitoring. DL-based methods are reliable and efficient end-to-end training models with higher
prediction accuracies, which are able to learn the nonlinear interrelation without the need for manual
feature extraction methods.

9.3. DL-Based SHM as Part of IoT and Smart Cities

Emerging wireless data transmission and cloud-based computation have created new paradigms,
known as the Internet of Things (IoT) [22]. Nowadays, it is practically feasible to mount low-cost
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wireless sensors in large numbers on infrastructures to efficiently monitor the structural health [229].
With the advantages of the powerful cloud-based computing and DL platforms, future studies would
integrate DL and IoT for SHM to extract information from a large amount of data that are constantly
received from networks of sensors. Such studies would further expand the boundaries of SHM and
IoT in a large-scale, by remote sensing and monitoring, as well as learning from previous events to
make decisions in the future. Smart and sustainable cities have been at the center of attention since the
introduction of the IoT concept. Interpreting a large amount of distributed data requires efficient DL
approaches that, ultimately, result in the integrity of the whole system with minimum costs and in an
automatic way. The future studies would introduce new protocols in data acquisition, transmission,
storing, and DL-based interpretation for SHM as part of IoT.

9.4. DL Applications in SHM through Transfer Learning/Synthetic Simulation Data

It is obvious that data play a key role in deep learning, and, as explained in previous sections, data
collection is not always possible. One option is using transfer learning to shortcut the learning process
by using some level of knowledge from earlier studies. An emerging technique for increasing the
training data size is using synthetic data for pre-training DL models while using finite element analysis
packages (for vibration-based data) or game engines (for vision-based data). Therefore, such data can
be used for pre-training a network before fine-tuning using real-work data.

9.5. DL-Based SHM Using Portable Smartphones, UAVs and GNSS

In the current era, cell phones have become an integral part of our lives. These programmable small
devices have a camera, memory, as well as good computing and network technology, which enables
offline and cloud-based real-time assessments. The smartphones are generally equipped with different
sensors, namely magnetometer, gyroscope, accelerometer, and GPS. These capabilities have made
them a potential device for structural health monitoring, particularly, when they are paired with
UAVs to obtain and process data while using DL-based algorithms. Moreover, the Global Navigation
Satellite System (GNSS) technology that is capable of acquiring massive amounts of accurate structural
vibration response data. These data can lead to noticeable gains in the operational efficiency of SHM.
The cost of SHM can be reduced and its reliability can be improved, as this modern technology and DL
will be linked together with a resulting decrease in the need for sensors [230].

9.6. DL-Based Seismic Vibration Control for Smart Structures

Time-delay and sensor failure are among the major issues that directly impact the performance of
vibration control systems during an earthquake [231]. By implementing recurrent neural networks
(RNNs), such as long short-term memory (LSTM) networks, it can be possible to predict the response
of structures to address delay problems. Furthermore, signal failures or damage presence can be
effectively detected, which leads to the design of stable and robust controllers [232]. Model-free deep
reinforcement learning techniques for seismic vibration control are novel and they can incorporate
deep learning models for training controllers by learning from experiments, which is suitable for active
and semi-active control problems [233]. With the recently developed open-source Python packages,
such as OpenseesPy [234] and OpenAI Gym [235], it is possible to build, train, and validate a deep
reinforcement learning algorithm for nonlinear structures under seismic excitations.
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