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Abstract
This study introduces a novel convolutional neural network (CNN)-based approach

for structural health monitoring (SHM) that exploits a form of measured compressed

response data through transfer learning (TL)-based techniques. The implementation of

the proposed methodology allows damage identification and localization within a real-

istic large-scale system. To validate the proposed method, first, a well-known bench-

mark model is numerically simulated. Using acceleration response histories, as well

as compressed response data in terms of discrete histograms, CNN models are trained,

and the robustness of the CNN architectures is evaluated. Finally, pretrained CNNs are

fine-tuned to be adaptable for three-parameter, extremely compressed response data,

based on the response mean, standard deviation, and a scale factor. The performance

of each CNN implementation is assessed using training accuracy histories as well as

confusion matrices, along with other performance metrics. In addition to the numeri-

cal study, the performance of the proposed method is demonstrated using experimen-

tal vibration response data for verification and validation. The results indicate that

deep TL can be implemented effectively for SHM of similar structural systems with

different types of sensors.

1 INTRODUCTION

It is essential to monitor critical civil infrastructure during

their life cycle. For many decades, operational methods for

assessing the health and status of structural systems have pri-

marily been through visual inspections. While this approach

remains essential for system health assessment, it presents

significant limitations that hinder the detection of various

types and extent of damage after short- or long-term disrup-

tive events. On the other hand, with the ongoing advance-

ments in low-cost sensor technologies and high-performance

computing, continuous and effective structural health moni-

toring (SHM) has become more feasible. In particular, exten-

sive research has been conducted on vibration-based dam-

age identification, and significant progress has been made

in this area. A broad range of techniques, algorithms, and
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methods are developed to solve various problems encoun-

tered in different structures with varying complexities. Com-

prehensive state-of-the-art reviews of various aspects of SHM

are available in a number of publications (Carden & Fan-

ning, 2004; Doebling, Farrar, Prime, & Shevitz, 1996; W. Fan

& Qiao, 2011; Kong, Cai, & Hu, 2017; Sinou, 2009; Sohn

et al., 2003). However, to this date, two of the major impedi-

ments to the widespread application of SHM for civil infras-

tructure systems have been the lack of (1) efficient and reli-

able methodologies coupled with signal processing of large

amounts of heterogeneous response data and (2) inexpensive

sensors. With the recent technological advancements, a rela-

tively large number of sensors and sensor networks can now be

deployed that produce large volumes of response data. While

the acquired data may not always provide sufficient or suit-

able information for conventional SHM methods, data-driven
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machine-learning (ML) techniques have been proposed by

researchers to assess the global health condition of host struc-

tures (Bao, Chen et al., 2019; Khoa, Alamdari, Rakotoarivelo,

Anaissi, & Wang, 2018; Sen & Nagarajaiah, 2018).

Data-driven damage detection methods may be imple-

mented as in pattern recognition problems for which neural

networks (NNs) can be used due to their adaptive learning

and fault tolerance capabilities. One of the challenges for

conventional NNs is that they require significant training

datasets and computation costs. Such limitations were

recently addressed by substituting deep learning (DL) tools

for feature extraction and classification tasks in damage detec-

tion problems using raw and processed signals without any

hand-designed features (Bao, Tang, Li, & Zhang, 2019; Tang,

Chen, Bao, & Li, 2019). At the center of the state-of-the-art in

DL with big-data lie convolutional neural networks (CNNs)

that have the ability to learn from any type of large size data

from multiple observables (sensors). CNNs have been used

for classification purposes such as electrocardiogram signals

(Kang & Cha, 2018; Kiranyaz, Ince, & Gabbouj, 2016)

and images (Scherer, Müller, & Behnke, 2010); however,

they are still new in SHM (Rafiei & Adeli, 2017; Rafiei,

Khushefati, Demirboga, & Adeli, 2017). Other successful

applications of CNNs in SHM are available in the literature,

which includes damage detection of steel frames (Abdeljaber,

Avci, Kiranyaz, Gabbouj, & Inman, 2017), pavement and

concrete crack detection (Cha, Choi, Suh, Mahmoudkhani, &

Büyüköztürk, 2018; Zhang et al., 2019), and overall system

condition assessment (Khodabandehlou, Pekcan, & Fadali,

2019). The scale of attention toward the use of DL methods

in damage detection, particularly CNN-based models with

the ability to learn hierarchical features, proves the great

potential of such strategies in tackling SHM problems.

The response data used for SHM purposes is almost

exclusively recorded in the time domain; however, some of

the researchers proposed the use of transformed data from

the time domain to frequency or time-frequency domains to

identify damaged structures from intact ones (Pan, Azimi,

Gui, Yan, & Lin, 2017; Pan, Azimi, Yan, & Lin, 2018). Kaveh

and Dadras (2018) improved a nature-inspired algorithm and

applied it to vibration-based structural damage localization

task, in order to minimize the differences between the

vibration characteristics of FE model and real structure. A

similar approach was also taken by Oh, Kim, Kim, Park, and

Adeli (2017) to develop a sustainable strain sensing model

for high-rise buildings. Tsogka, Daskalakis, Comanducci,

and Ubertini (2017) developed a computationally efficient

technique based on the stretching method for long-term

monitoring of large structures using vibration response data.

Recently, Roohi, Hernandez, and Rosowsky (2019) proposed

a nonlinear model-data fusion algorithm for state estimation

in nonlinear hysteretic structural systems. The main feature of

the proposed algorithm is that it is designed to be physically

realizable as a nonlinear structural model, which makes it

appealing for vibration-based monitoring applications. The

approach was employed for seismic monitoring of exper-

imental and real-world large-scale instrumented buildings

(Hernandez, Roohi, & Rosowsky, 2018; Roohi et al., 2019).

Yao, Yi, Qu, and Li (2018) proposed a new blind identifi-

cation method based on sparse component analysis through

time-frequency method, which was experimentally evaluated

using measured acceleration data from the sensors installed

on the Yonghe Bridge. Pan, Azimi, Gui et al. (2017) and

Pan, Azimi, Yan et al. (2018) proposed ML-based methods

for vibration-based damage detection for large-scale bridge

structures utilizing time-frequency approaches. Li, Park,

and Adeli (2017), Amezquita-Sanchez and Adeli (2015),

and Amezquita-Sanchez, Park, and Adeli (2017) took the

advantages of wavelet and Hilbert transforms for modal

parameter identification. Yuen and Huang (2018) improved

the Bayesian substructure identification method for inverse

problems in SHM of large-scale structures. Huang, Beck, and

Li (2018) introduced a multitask sparse Bayesian learning

approach by using multiple groups of measurements based

on the sparseness similarity, which can be used as a tool to

reconstruct the lost data during wireless data transmission,

as well as in structural stiffness estimation. These methods

are developed for feature extraction to identify the presence,

location, and type of damage in structural systems. A detailed

breakdown of the various methods including those derived

from statistical and probabilistic approaches is presented in

previous studies (W. Fan & Qiao, 2011; Kong et al., 2017).

Recently, a type of self-powered sensor which acquires

strain or acceleration response data in a compressed form

has been introduced (Alavi, Hasni, Jiao, Borchani, & Lajnef,

2017; Aono et al., 2017; Hasni et al., 2017). In these sen-

sors, a series of memory cells store the duration of measured

responses cumulatively provided that the preselected thresh-

olds are defined and discretized. In other words, the duration

of each event corresponds to the number of exceedance when

the input signal exceeds the predefined thresholds. Therefore,

the recorded response data is in the form of histogram of

events (compressed), instead of time-history of responses. To

use this form of discrete, compressed, and limited response

data for damage detection purposes, new approaches must be

defined. It is further suggested that statistical properties of fit-

ted continuous distributions such as mean and standard devi-

ation (STD) provide extremely compressed representation of

the response data. These quantities can be used to identify the

type, location, and extent of damage using DL, which is the

main goal of this study.

The present study can be viewed in three phases. First,

condition of a SHM benchmark problem (Caicedo, Dyke,

& Johnson, 2004; Johnson, Lam, Katafygiotis, & Beck,

2004) was evaluated using a CNN model based on mea-

sured acceleration response data acquired by conventional
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F I G U R E 1 A typical convolutional neural network

Micromachined Microelectromechanical Systems (MEMS)

sensors. This model and its performance were used as refer-

ence for the evaluation of the methods proposed in this paper.

In the second phase, all of the acceleration time-history data

were converted to discrete histograms (compressed data)

that would have been recorded by self-powered sensors, and

system condition assessment was then carried out using a

CNN model as in the first phase. In the third phase, a transfer

learning (TL)-based method was developed to extract infor-

mation from discrete response histograms (compressed data),

and to utilize three-parameter representation of vibration

response data (extremely compressed) for subsequent system

evaluations. For this purpose, 70% of the discrete histograms

were treated as the source domain for which the “pretrained”

CNN models were developed. Subsequently, each model

is “fine-tuned” using the fitted smooth distributions (target

domain) obtained from the remaining 30% of the histograms,

which are essentially defined by only three parameters;

mean, variance, and a scale factor. Finally, it is noted that

system evaluation in each phase was performed using 90% of

available sensor data for training and the remaining 10% for

testing of CNN. The strategy was evaluated and verified using

a SHM benchmark model with different damage patterns.

The numerical simulations of structural models were carried

out using Matlab®, while the CNN models were created and

trained using Python libraries that provide high-performance

DL algorithms, particularly when using Tensorflow-GPU,

which makes training process significantly faster through

GPU-based parallel computation. Subsequently, the proposed

method and CNN models are used with experimentally

recorded response data from two different SHM benchmark

structures to further validate the accuracy and robustness.

2 CNN

CNNs belong to a group of artificial neural networks (ANNs),

which are well known for their applications in the classifica-

tion of images, audio, and text. The main difference between

a typical neural network and a CNN is that NN uses general

multiplication while CNN uses convolution that makes it a

perfect tool for processing data in a vector or grid form such

as pictures/images. It was demonstrated that in applications

for SHM, time-history of vibration response data could be

converted into grid-like 2D matrices (Khodabandehlou et al.,

2019). Furthermore, time-history of vibration response data

obtained from sensors could be treated as distinct images.

Clearly, various forms of response data representations (time-

history, discrete histograms or continuous distributions) can

be treated as such. Figure 1 shows the architecture of a CNN

for which the inputs are images of specific sizes. Different

configurations can be considered for a CNN depending on the

performance and the cost of computation. Different filters are

trained and applied to the input images in order to automati-

cally extract features. The fully connected (FC) layers link the

output of convolution layers to the output layer with specified

activation functions.

The most important segment of a CNN is the convolution

and pooling layers. For a 1D convolution with a single chan-

nel, the operating function for discrete data can be written as

(Avci, Abdeljaber, Kiranyaz, & Inman, 2017):

𝐹 (𝑖) =
𝑣𝑘∑
𝑛=1

𝑆(𝑖 + 𝑛)𝐾(𝑛) (1)

For a multichannel scenario, convolution is applied on each

channel in parallel, and the results are added up. The “stride”

parameter is the step length between each gap, which is equal

to one for all the convolution layers in this study. Each convo-

lution layer is followed by a pooling layer. Using the pooling

layers, the large feature map is down-sampled in a way that

the small variance of the input data is not reflected on the out-

puts. In this study, the max-pooling layers reduce the dimen-

sions by half. Activation functions are used in order to acti-

vate nonlinear mapping for an NN. The rectified linear units

(ReLUs) (Glorot, Bordes, & Bengio, 2011; Nair & Hinton,

2010) are half-rectified activations functions for the convo-

lutions layers that can increase the training speed. Therefore,

the gradients on the right-side of the function can be retained

with cheaper computations without vanishing. The main issue

with the ReLU is that some weights on the left-side can vanish

during the training and never activate again. Therefore, in this

study, the leaky ReLU function (Maas, Hannun, & Ng, 2013)
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is used after each batch normalization (BN), which increases

the range of the ReLU function on the left-side by introducing

a small slope to the function; 𝛼 = 0.01 in this study.

2.1 Regularization
In order to avoid overfitting and premature convergence, one

method of generalization is to add dropout layers to the net-

work architecture, which drop out a percentage of data at each

training step. As the input data flow into a CNN, the values

are adjusted based on weights, which makes data too big or

too small (vanishing gradient problem). Therefore, the algo-

rithm needs to fit such unstable distributions in each training

iteration, which results in a low learning rate. This problem

can be alleviated with a cheaper computational cost if each

mini-batch is normalized based on mean or variance. Thus,

the outputs have a similar distribution, which makes the train-

ing easier and with fast convergence. BN was introduced first

by researchers at Google (Ioffe & Szegedy, 2015) to solve the

internal covariate shift. Nowadays, BN is used in the major-

ity of CNN configurations because: (a) the required iterations

are reduced and the training of network is much faster, which

enables training deeper networks; (b) higher learning rates are

allowed, which is not always possible with gradient descent;

(c) more activation functions become viable, since they are

regulated by BN; (d) better overall results can be achieved.

BN uses weights without adding bias term, and it is added

before calling the activation functions (Cooijmans, Ballas,

Laurent, Gülçehre, & Courville, 2016). Therefore, dropout

can be removed from the network architecture since BN does

have regularization effect, as well (Lin, Nie, & Ma, 2017). BN

procedure is presented in Equations (2)–(5).

𝜇𝐷 = 1
𝑚

𝑚∑
𝑖=1

𝑥𝑖 (2)

𝜎2
𝐷
= 1

𝑚

𝑚∑
𝑖=1

(𝑥𝑖 − 𝜇𝐷)2 (3)

�̂�𝑖 =
𝑥𝑖 − 𝜇𝐷√
(𝜎2

𝐷
+ 𝜖)

(4)

𝑦𝑖 = 𝛾�̂�𝑖 + 𝛽 (5)

where 𝜖 is a very small value, 10−6 in this study, to avoid the

denominator becoming zero. Using BN, in each training step,

the mean and variance of each mini-batch of data are calcu-

lated, and the original data is shifted and scaled to have zero

mean and one variance. In order to keep the model flexible, 𝛾

and 𝛽 parameters are introduced.

4
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F I G U R E 2 Visualization of stratified k-fold cross-validation

with k = 5

2.2 Training and cross-validation
The designed networks are trained using the Adam stochastic

gradient descent optimization method (Kingma & Ba, 2014)

and the categorical cross-entropy loss as the objective func-

tion that measures the performance of a classification method,

for which the output is a probability value. For multiclass clas-

sification, it is defined as (Avci et al., 2017):

𝐻(𝑝, 𝑞) = −
𝑀∑
𝑖=1

𝑝(𝑥𝑖) log(𝑞(𝑥𝑖)) (6)

where, H is the cross-entropy loss; 𝑝 and 𝑞 are true and pre-

dicted the probability for an observation, respectively; 𝑀 is

the number of total classes. For every training iteration, the

data batch size is 128, which shows the number of steps in a

single epoch. The learning rate of Adam algorithm is selected

to be lr = 0.00005, and the parameters for the weight of the

momentum and decay of learning rate are selected as 𝛽1 = 0.9
and 𝛽2 = 0.99.

In order to achieve more generalized relationships, the k-

fold cross-validation is used in this study (Figure 2). Using

the k-fold cross-validation, (a) the entire dataset is split into k
folds; (b) for each fold, a model is trained based on the k−1

folds, and the effectiveness is validated for the kth fold; (c)

by recording the prediction accuracy from each run, average

k recorded accuracy serves as the performance. In order to

ensure that each fold is a proper representative of the entire

dataset, data is rearranged using stratification. Data samples

are shuffled before splitting into specified batches.

The details of the reference CNN model that is used to

compare the accuracy using MEMS and self-powered sen-

sors, as well as training the “pretrained” networks, are given

in Table 1, which are slightly modified for different cases

depending on the database size and difficulty of the problem.

Following similar studies in literature, the architecture of the

reference CNN model was optimized starting from fewer con-

volution layers and by trial and error. The flowchart of this

model is presented in Figure 3.



AZIMI AND PEKCAN 601

T A B L E 1 The configuration of the reference CNN architecture

Layer Type Kernel number Kernel size Stride Padding Activation
1 Convolution 16 3 1 Same ReLU

2* Convolution 16 3 1 Same ReLU

3** Convolution 16 3 1 Same ReLU

4 Batch normalization – – – – –

5 Advanced activation – – – – Leaky ReLU

6 Max. pooling – 2 – Valid –

7 Convolution 32 3 1 Same ReLU

8* Convolution 32 3 1 Same ReLU

9** Convolution 32 3 1 Same ReLU

10 Batch normalization – – – – –

11 Advanced activation – – – – Leaky ReLU

12 Max. pooling – 2 – Valid –

13 Convolution 64 3 1 Same ReLU

14* Convolution 64 3 1 Same ReLU

15** Convolution 64 3 1 Same ReLU

16 Batch normalization – – – – –

17 Advanced activation – – – – Leaky ReLU

18 Max. pooling – 2 – Valid –

19 Flatten – – – – –

20 Batch normalization – – – – –

21 Dense – – – – –

22 Dense – – – – –

23 Softmax – – – – Softmax

Note: * and ** are used for Case 3 and Case 8, respectively.

Conv1D

Conv1D

Conv1D

BN

Leaky ReLU

Max pooling1D

Conv1D

Conv1D

Conv1D

BN

Leaky ReLU

Max pooling1D

Conv1D

Conv1D

Conv1D

BN

Leaky ReLU

Max pooling1D Output:
Damage Pattern

Flatten

BN

Dense

Dense

Softmax

Block 1 Block 2 Block 3

Time-history Data (MEMS)
or Histogram Data (Self-powered)

F I G U R E 3 The reference 1D-CNN configurations (two separate models for two types of input data/sensors)

3 TRANSFER LEARNING

For a deep CNN, as the depth of the networks increases,

the training procedure takes much longer time due to the

complexity of the network and a larger number of training

parameters requires more data. TL provides a powerful tool

to reduce the dependency of DL techniques on the size of

available data. By definition, TL transfers some level of

knowledge from a source domain to the target domain for

similar data types (Pan & Yang, 2010). Application of TL is

an emerging area in vision-based SHM, and novel studies are

being carried out in classification problems in vision-based

SHM (Gao & Mosalam, 2018); however, TL applications in

vibration-based SHM are not significant.

Following the state-of-the-art in vision-based SHM, dur-

ing the TL process, feature extraction layers of a pretrained

CNN are frozen and the classification layers are fine-tuned

with a lower computational cost. Figure 4 shows different TL

strategies that can be used based on the data size in the target

domain and its similarity to the source domain. In this figure,
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F I G U R E 4 Different TL strategies based on target domain data

size and its similarity to source domain data

which is simplified according to the reference CNN model,

the convolution and pooling layers are shown with larger rect-

angles and the FC layers with smaller rectangles. For these

four approaches, the trainable layers are shown with lightly

shaded boxes. Another common way in TL is to replace the

fully connected (FC) layers of a pretrained network with new

layers based on the complexity of the classification problem;

in this study, the FC layers are replaced with two successive

BN-Dense-Leaky ReLU layers that are followed by the Soft-

max layer. Therefore, the weights in the convolutional layers

are fixed and skipped during the training, and the output of

the “Flatten” layer is considered as the training data for fine-

tuning the classification layers’ weights.

The general practice in vision-based SHM using TL is to

fine-tune and improve the flexibility of a pretrained DL model

that has already been created based on an image dataset. The

same approach is considered in this study; however, pretrain-

ing and fine-tuning are done on the same structure response,

but each with different data domain.

As it was mentioned earlier and shown in Figure 5, 70%

of the discrete histogram data (compressed) was taken as

the source domain to build the pretrained CNN models, and

the remaining 30% of the data (extremely compressed; tar-

get domain) was fitted smooth distributions to derive three

parameters; mean, variance, and a scale factor. By freezing the

first layers of the pretrained network, the knowledge (CNN’s

weights) from the source domain is used for adapting the mid-

to high-level classification tasks in the target domain using

the three parameters of the smooth distributions. It should be

noted that the tenfold cross-validation technique was used for

all of the models. The architectures of the CNN models for

the pretrained and fine-tuned models are provided in Figure 6.

The convolutional blocks are similar for all of the models.

For each damage pattern in this study, 1,000 uniquely

labeled data samples were numerically generated using dif-

F I G U R E 5 Data compression in the form of histograms (level

crossing cumulative time counting) using self-powered sensors

ferent input excitation signals. Therefore, the total number of

data samples is 9,000 that include the intact structure as well.

Subsequently, the discrete histograms of the entire data were

obtained to simulate the response data that would have been

recorded using self-powered sensors. In addition, smooth

distributions with the same number of bins (as in discrete

histograms) were derived based on the mean, variance,

and scale factor parameters. For each fold of the tenfold

cross-validation, 10% of the data samples were selected for

testing. Therefore, all of the 1,000 data samples appeared

in the testing phase (e.g., confusion matrices). Only 70% of

the histogram data were used as the source data domain to

train and test the “pretrained” CNN models for TL, and the

remaining 30%, that is, smooth distributions, were used as

the target data domain to “fine-tune” the “pretrained” models

in the previous step. The tenfold cross-validation method was

used for training and testing of all of the models. No identical

data samples were observed during the numerical data

generation.

4 NUMERICAL VERIFICATION

Figure 7 shows the four-story quarter-scale steel frame

model known as the IASC-ASCE structural health monitoring
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F I G U R E 6 TL procedure and CNN configurations of the pretrained (top) and fine-tuned (bottom) models; tenfold cross-validation is used for

each model

F I G U R E 7 The analytical model of the IASC-ASCE SHM

benchmark (Johnson et al., 2004)

benchmark problem (Johnson et al., 2004). It is 3.6 m tall, and

the plan is 2.5 m × 2.5 m. The sections of the members are

hot rolled, and columns have stronger bending stiffness in the

x-direction. Each floor has a pair of diagonal bracing mem-

bers that can be removed to simulate damage. Each floor has

four slabs that are 800 kg on the first floor, 600 kg on the

second and third floors, and 400 kg on the fourth floor. Two

different finite element models were developed to simulate

the behavior of the benchmark problem (Caicedo et al., 2004;

Johnson et al., 2004). The Euler–Bernoulli beams are used

for columns and floor beams, and no bending stiffnesses are

considered for braces. The first model assumes that each floor

has three degrees of freedom (12-DOF shear frame), while the

second model consists of 120-DOF that allow the floor slab

to have out-of-plane motion and rotation in order to simulate

the effects of modeling errors (Caicedo et al., 2004). In other

words, for the 120-DOF model, the nodes of each floor have

the same horizontal translational and vertical rotation, and the

out-of-plane DOF of floors, such as vertical movements and

rolling, are active. Sixteen accelerometers; four per floor (two

in each direction), are assumed to measure the responses at

the center column of the external frames.

In addition to Intact case, a total of eight damage patterns,

P1–P8, are considered, which may be detectable using sim-

ple to complex algorithms. They are defined to validate the

ability of the proposed methods in detecting various damage

scenarios. The eight damage patterns are shown in Figure 8,

some of which are given in Johnson et al. (2004). In dam-

age patterns P1 and P2, one of the braces of the first floor is

damaged by 30% and 100%, respectively. Damage pattern P3

is characterized with two complete brace failures on the first

and the second floor as shown in the figure.
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F I G U R E 8 Damage patterns for the SHM benchmark problem

In damage pattern P4, two braces of the first and second

floors are fractured; in addition, two of the floor beams are

released from both end connections. In damage pattern P5, all

of the braces from the first floor are removed. Similarly, in

damage pattern P6, all the braces are removed from the first

and third floors. For damage pattern P7, brace members at the

first two floors in the west are removed. Finally, in the damage

pattern P8, all of the braces are failed on one side, in addition

to the floor beams of the frame in the first two floors. The

MATLAB code for the structural model was obtained from

the NEES Database for Structural Control and Monitoring

Benchmark Problems (Dyke, 2011a).

The input ambient (wind) excitations are defined using

independent filtered Gaussian white noise (Johnson et al.,

2004), the noise level that is a percentage of RMS of the sig-

nal, is selected to be 10%. For each data sample, the sampling

rate and duration are 100 Hz and 10 s, respectively. There-

fore, 1,000 data samples are generated for each damage pat-

tern for which, the signals contain 1,000 data points per sen-

sor. A total of 16 sensors (four per floor level) were assumed to

be located at the center of each floor beam along the perime-

ter. For one of the cases, the shaker-induced vibration is used

for damage detection (Johnson et al., 2004). The damage pat-

tern groups and the associated datasets are summarized in

Table 2.

5 RESULTS AND DISCUSSION

This section presents comparison and performance of the

proposed SHM alternatives: (a) CNN using time-domain

response data from conventional sensors (MEMS) and also

using response data in the form of discrete histograms

from self-powered sensors (compressed data) as depicted in

Figure 3, and (b) CNN and TL using response data represented

in terms of three statistical parameters only (extremely com-

pressed data) as depicted in Figure 6.

5.1 Damage identification using MEMS and
self-powered sensor data

In order to describe and compare the performance of the

classification models during the training and testing phases,

training history and the confusion matrices are provided for

each considered case in Table 2. Figures 9 and 10 present the

training epoch with respect to the accuracy and loss history

curves. The mean values from all of the folds are shown with

solid lines (accuracy = ascending with left vertical axis, and

loss = descending with right vertical axis), and the shaded

areas around each curve represent the envelop ranges. From

the curves for each training, it can be seen that using the

MEMS raw acceleration response data, the training is fast and

they converge quickly, except for Cases 1–3. This observa-

tion is deemed reasonable since the damage patterns 1 and

2 share similar characteristics in these groups. It is obvious

that the automatic feature extraction using DL classification

approach yields an approximately perfect classification based
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T A B L E 2 Datasets and damage detection goals for the SHM benchmark problem

Case Excitation Model Damage patterns Mass distribution Dataset sizea

1 Wind 12 DOF Intact,1,2 Symmetric 1,000 × 16 × 3,000

2 Wind 12 DOF Intact,3,4 Symmetric 1,000 × 16 × 3,000

3 Wind 120 DOF Intact,1,2,3,4 Symmetric 1,000 × 16 × 5,000

4 Wind 12 DOF Intact,5,6 Symmetric 1,000 × 16 × 3,000

5 Wind 120 DOF Intact,5,6 Symmetric 1,000 × 16 × 3,000

6 Shaker 12 DOF Intact,5,6 Symmetric 1,000 × 16 × 3,000

7 Wind 120 DOF Intact,7,8 Symmetric 1,000 × 16 × 3,000

8 Wind 120 DOF Intact,1,2,3,4,5,6,7,8 Symmetric 1,000 × 16 × 9,000

aDatasets were generated using MATLAB code. The three dimensions of the datasets indicate the time-history signal length, number of sensors or channels, and number

of simulated samples, respectively.

on the MEMS (time-domain) data for this specific benchmark

problem.

On the other hand, the accuracy and loss history plots asso-

ciated with the self-powered sensor data (discrete histograms)

demonstrate that the main features can be extracted using

the CNNs, despite the compressed nature of the data. These

features allow faster convergence during the training phase in

comparison to that associated with the MEMS data, and result

in significantly higher levels of accuracy in both training

and testing phases. Nonetheless, the training phase with an

achieved 100% accuracy level does not indicate a perfect

classification model. Therefore, the corresponding confusion

matrices are used as another measure for determining the clas-

sification accuracy (diagonal elements) as well as misclassi-

fications (off-diagonal elements) for each individual damage

pattern. In the confusion matrices, all of the integers of the

diagonal elements indicate the correctly classified data sam-

ples, and the off-diagonal elements are misclassified. The sum

of all the integers is equal to the total number of the datasets

since the k-fold cross-validation method is used (i.e., 10% of

the available response data used as test dataset per fold). The

ratio of each integer to the total number of response data is

shown in percentage. The overall accuracy score is shown in

the lower right corner of the matrices, while the prediction

accuracy scores for the individual damage patterns are shown

in the last column and row. P1–P8 class names indicate the

pattern number for each damage class in confusion matrices.

For Case 1, using both MEMS and self-powered sen-

sor data, P2 is identified accurately, but there is an overlap

between P1 and Intact patterns. The overall score for the self-

powered-based models is higher for Case 1, particularly con-

sidering the computational costs due to the dimensions of the

input data and the epochs. It is noted that the architecture

of the models remained the same for both sensor data types.

Similar results were obtained for Case 2 for which the over-

all scores are almost 99.9%. The training history indicates a

faster convergence when self-powered sensor data are used.

A similar conclusion can be made when all of the first four

patterns are combined as Case 3. For Cases 4 through 6, the

self-powered sensors data does not lead to high accuracies in

comparison to MEMS data that result in classification scores

of 100%. However, both models accurately classify patterns

Intact, P7, and P8 (Case 7). Finally, for Case 8 that includes

all of the eight damage patterns, the overall scores of 96.5%

and 98.1% are achieved for CNN models based on the data

from MEMS and self-powered sensors, respectively, which

indicates the feasibility of using CNNs for damage detection

using the self-powered sensor data (Figure 11).

5.2 Damage identification using extremely
compressed data using TL-based approach
Using the same learning rate as specified for the training

phase of the source domain, the CNN models were fine-tuned

according to Figure 6. In order to compare the training and

testing phases for the source and target domains, the categor-

ical cross-entropy loss and the corresponding accuracy his-

tory are provided for all of the eight cases in Figure 12. The

mean values of the k-fold cross-validation results are plotted

in these figures. The accuracy curves for the source domain

(70% of self-powered sensors data in the form of discrete his-

tograms; compressed) are shown with dashed lines and those

for target domain (30% of the self-powered sensors data in

form of three-parameter distributions; extremely compressed)

are presented with solid lines. The faster convergence of the

training phase of the target domain with the DL models that

include the frozen CNN layers indicates that the convolution

layers carry important information from the source domain

while the classification mainly relies on the extremely com-

pressed response data. Furthermore, the classification per-

formance for the fine-tuned models is shown in Figure 13.

Again, the mean accuracy scores are obtained from the k-

fold cross-validation. From the accuracy scores of the test

sets for the source and target domains, it is observed that the

three parameters; mean (𝜇), variance (𝜎), and a scale fac-

tor (SF), are sufficient for identification of damage classes

for which the network is trained through TL-based fine-

tuning. An exception for Case 3 is noted in which the use of
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F I G U R E 9 Training accuracy/loss history and the corresponding total confusion matrices of the test datasets: Cases 1–5
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F I G U R E 1 0 Training accuracy/loss history and the corresponding total confusion matrices of the test datasets: Cases 6–7

F I G U R E 1 1 The total confusion matrices of the test datasets: Case 8

compressed response data results in lower accuracy score.

Further model evaluation metrics are provided in the follow-

ing section.

5.3 Evaluation metrics
In addition to confusion matrices, the accuracy, precision,

recall, and F1 scores were calculated for the test datasets

from all folds and the box plots are shown in Figures 14–

16. The metrics are defined as follows, and more details are

available from scikit-learn documentation (Pedregosa et al.,

2011).

Accuracy (𝑦, �̂�) = 1
𝑛samples

𝑛samples−1∑
𝑖=0

1(�̂�𝑖 = 𝑦𝑖) (7)

Precision (𝑦, �̂�) = TP
TP + FP

(8)

Recall (𝑦, �̂�) = TP
TP + FN

(9)
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F I G U R E 1 2 Training history of the source and target domain datasets

𝐹𝛽 = (1 + 𝛽2) 𝑃 × 𝑅

𝛽2𝑃 + 𝑅
, (𝐹1 = 𝐹𝛽=1) (10)

where, 1(𝑥) is the indication function; �̂� and 𝑦 are the predicted

true labels; TP is the number of true positives; FP is the num-

ber of false positives; and FN is the number of false negatives.



AZIMI AND PEKCAN 609

F I G U R E 1 3 Mean accuracy scores of the test subsets of the

pretrained (source domain) and fine-tuned (target domain) models

𝑃 and 𝑅 indicate precision and recall scores, respectively.

Figures 14–16 show the box plots of the four mentioned scores

for the reference CNN model that uses MEMS data for clas-

sification of the defined patterns. For Cases 2 and 4–7, the

obtained accuracy, precision, recall, and F1 scores are approx-

imately 100%, and for the Cases 1, 3, and 8, the mean scores

fall between 95% and 99%. Using the self-powered sensors

data (discrete histograms), similar results are achieved, with

the exception of Case 4, for which the scores fall between

85% and 95% with the mean values of approximately 91%.

In addition, 50% of the k-folds for Cases 5, 6, and 8 have test

scores between 91% and 96%, 95% and 98%, and 97% and

99%, respectively. For Cases 1, 2, and 7 using the fined-tuned

models based on the compressed data nearly perfect scores

are obtained; however, the variance for Case 3 is larger with

precision scores between 50% and 100%.

In order to further investigate and verify the performance of

each CNN model, the receiver operating characteristic (ROC)

is used to compare the accuracy of the proposed methods

with respect to each damage class (Pan, Azimi, Gui et al.,

2017; Pan, Azimi, Yan et al., 2018). More information on

ROC curves is presented by (J. Fan, Upadhye, & Worster,

2006). The ROC curve that is closer to the upper-left corner of

the plot demonstrates a higher accuracy. In addition to ROC

curves, the area under the curve (AUC) indicates the level of

accuracy in identifying damage location as well as the perfor-

mance in the presence of noise in the measured response data.

The maximum value for AUC is 1, which corresponds to a per-

fect classifier, and an acceptable value is AUC ≥ 75% (Pan,

Azimi, Yan, et al., 2017). The performance curves that factor

in scores of the negative classes for a multiclass classification

can be defined as follows:

Score 𝑠dif f = scores (positive class)

−max (scores (negative classes)) (11)

F I G U R E 1 4 Accuracy, precision, recall, and F1 scores based on the MEMS data

F I G U R E 1 5 Accuracy, precision, recall, and F1 scores based on the self-powered data
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F I G U R E 1 6 Accuracy, precision, recall, and F1 scores based on the extremely compressed data using TL

F I G U R E 1 7 Performance curves of the three different SHM

approaches

where, 𝑠𝑐𝑜𝑟𝑒𝑠(∗) is the prediction probabilities for each

instance of the test datasets (Chollet, 2015). Figure 17 shows

the ROC curves and the AUC of each damage pattern, which

is obtained from all the k-fold test data sets. It can be seen

from the ROC curves associated with the CNNs using the

MEMS and self-powered sensors data result in good clas-

sification. The other performance curves using the three-

parameter extremely compressed response data and TL-based

method give the AUC of approximately one for all damage

patterns except P5.

6 EXPERIMENTAL VERIFICATION

The proposed CNN models were further used to validate the

application of the method for real-world problems. Therefore,

the experimentally recorded vibration response data from

two benchmark problems have been used (Figure 18). The

first problem is the IASC-ASCE SHM benchmark building

that is used to develop the numerical procedure in this study

(Caicedo et al., 2004; Johnson et al., 2004). The damage

classes for this building are defined as follows: (a) fully

braced configuration; (b) missing all east side braces; (c)

removed braces on all floors in one bay on SE corner; (d)

removed braces on 1st and 4th floors in one bay on SE corner;

(e) removed braces on 1st floor in one bay on SE corner;

(f) removed braces on all floors on east face and 2nd floor

braces on north face; (g) all braces removed on all faces; (h)

configuration 7, plus loosened bolts on all floors—both ends

of beams on east face, north side; (i) configuration 7, plus

loosened bolts on floors 1 and 2—both ends of beams on east

face, north side (Dyke, 2011b). For this benchmark structure,

for each damage pattern, the dataset has a size of 60,000 × 16,

which was split into data samples with the size of 1,000 × 16.

The second structure is a steel frame with 5 × 6 bolted joints,

which was recently tested at Qatar University Grandstand

Simulator (QUGS) (Abdeljaber et al., 2018). The damage

classes for the QUGS benchmark frame were defined based

on the location of the loosened bolts (30 joints, 30 damage

classes). Therefore, using 30 sensors deployed at each joint

location on the horizontal beam flanges, the dataset is a matrix

with the size of 262,144 × 30 for each damage scenario.

The CNNs were trained using data samples with the size of
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F I G U R E 1 8 (a) IASC-ASCE SHM benchmark building (photo

courtesy Prof. Carlos Ventura, UBC), and (b) QUGS structural steel

frame (photo courtesy Prof. Onur Avci, QU)

F I G U R E 1 9 Training and validation histories of the

experimental case studies (mean of fivefolds)

F I G U R E 2 0 The total confusion matrix of the IASC-ASCE

experimental case study (sum of fivefolds)

1,024 × 30. Further details regarding the experimental setup

and the datasets are available from the original publications.

Before using the proposed method, the time-history

response data from both structures were converted into dis-

crete histograms to simulate the self-powered sensors that

were mentioned earlier. Two dropout layers were added to

the reference CNN architecture after the dense layers to avoid

overfitting. In addition, in order to show the training phase

performance, 10% of each training subset of fivefolds was

used as the validation subset. The training and validation his-

tories are shown in Figure 19 for both cases, and the con-

fusion matrices are given in Figures 20 and 21. Due to the

large number of damage classes, only the number of data sam-

ples (observation) is shown in the confusion matrices. For the

IASC-ASCE SHM benchmark building frame, perfect clas-

sification scores were obtained using the proposed method,

while for the QUGS benchmark steel frame, the accuracy level

of 91.9% is achieved.

7 SUMMARY AND CONCLUSION

In this paper, the use of CNN coupled with deep TL is intro-

duced and demonstrated for general applications in vibration-

based SHM on several benchmark structural systems. Three

types of sensor data were considered: (1) time-domain data

acquired with conventional accelerometers, (2) compressed

data in the form of discrete histograms of response thresh-

olds, acquired by self-powered sensors, and (3) extremely

compressed three-parameter data in the form of continu-

ous distributions. First, reference CNN models were devel-

oped and implemented using response data from conventional

accelerometers and compressed data from self-powered sen-

sors. Subsequently, a new TL-based strategy is proposed. The

proposed method implements TL to fine-tune the pretrained

CNNs that use the self-powered sensors data so that extremely

compressed three-parameter response data can be used effec-

tively. The extremely compressed data consist of three param-

eters as; mean, variance, and a scale factor for the measured
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F I G U R E 2 1 The total confusion matrix of the QUGS experimental case studies (sum of fivefolds)

responses. In order to evaluate the performance of the pro-

posed models, accuracy and loss histories, confusion matri-

ces, performance curves along with the model evaluation met-

rics are presented for combinations of damage patterns.

The results indicate that SHM strategies lead to high classi-

fication accuracies using conventional MEMS data. In addi-

tion, the results from the similar CNN models highlight the

potentials of self-powered sensors for which, the time-domain

information may not be recoverable. Owing to the mean accu-

racy scores of 90–100%, the TL-based fine-tuning of previ-

ously trained CNNs, allows effective use of response data that

can be represented by only three parameters without consid-

erable loss in accuracy for the specific benchmark problems

considered in this study.

Finally, it is noted that the damage patterns are predefined

and other potential damage scenarios may not be detected cor-

rectly. On the other hand, extensive numerical simulations

using highly nonlinear and accurate finite element models

can be used to derive response data for practically all plau-

sible damage scenarios that can be used to train CNNs. How-

ever, it is also possible to implement an unsupervised clus-

tering procedure that does not need labeled data in advance.

Furthermore, hybrid and parallel CNN models can be devel-

oped for large-scale real-world applications in that each CNN

may be designed for specific subgroups of damage patterns

and for respective damage identification and localization

tasks.
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