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Abstract: Dynamic characteristics of cable-stayed bridges are widely accepted as valuable indicators to determine their performance in
structural health monitoring (SHM). Although research has been extensively conducted in this area, such vibration-based physics methods
still face great challenges in improving the effectiveness of damage identification from complex large-scale systems, particularly when
other factors, including operational and environmental conditions, may cause high interference to the vibration response. Data-intensive
machine learning techniques have been gaining attention due to their robustness for data classification. In this study, a framework was
developed for data-driven structural diagnosis and damage detection using a support vector machine (SVM) integrated with enhanced fea-
ture extraction techniques for rapid condition assessment for large-scale cable-stayed bridges. The wavelet transform, Hilbert-Huang
transform (HHT), and Teager-Huang transform (THT) were selected as three representative feature extraction methods. A kernel
function-based SVM was used to facilitate the identification of damaged and undamaged cases. Numerical simulation was conducted to
verify the effectiveness and accuracy of the proposed methods applied to a cable-stayed bridge. Results showed that the wavelet time-
frequency analysis is more robust to noise than the HHT and THT, whereas the latter two transforms are more sensitive to capture dam-
age/defects. Moreover, for regular signal data, the THT, due to the high time resolution, had the highest concentration and thus is the most
sensitive compared with the other two methods. Parameters of interest, including impacts of damage level, damage location, sensor loca-
tions, and moving vehicle loading, are extensively discussed. All cases reveal that data-driven approaches could effectively map damage
features over and under undamaged cases, dramatically enhancing the effectiveness and accuracy of data classification, which will greatly
benefit in situ cable-stayed bridge assessment and management. DOI: 10.1061/(ASCE)BE.1943-5592.0001199. © 2018 American
Society of Civil Engineers.
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Introduction

An ever-increasing amount of cable-stayed bridges have been con-
structed in the United States and other countries in recent decades.
Cable-stayed bridges are robust and competitive systems for long-
span crossings over conventional bridges. The stay cable, anchor-
age, bridge deck, and pylon are the major components in a cable-
stayed bridge and are used to maintain structural integrity under
in-service operational stages or any extreme events. Such long-span
bridges, however, are vulnerable to fatigue-induced damage and
environmental attacks. Particularly, aging effects, climate change,
and ever-increasing traffic conditions (volume, size, and weight)
accelerate the deterioration of the bridges. As recently reported (Li

and Ou 2016), the cable-stayed bridges have exhibited certain lev-
els of structural degradation, including tension loss in cables,
steel corrosion, degradation of anchorage, and deck fatigue and
fractures (Yan et al. 2016; Yan et al. 2017). For instance, in recent
years, fatigue-prone cracks in many cable-stayed orthotropic
bridge decks have been reported in the United States (Fasl 2013),
Europe (Maljaars et al. 2012), China (Ge and Xiang 2011; Guo
et al. 2015; Xia et al. 2013), and other countries (Battista et al.
2008).

Dynamic characteristics of large-scale cable-stayed bridges
could yield valuable information regarding their performance. To
effectively capture abnormally dynamic characteristics of such
long-span bridges while avoiding catastrophic failures, various
strategies using sensors have been widely accepted in structural
health monitoring (SHM). Among many sensor technologies, use
of wireless sensor networks can overcome the limitations of the tra-
ditional power-wire-based sensor systems to facilitate SHM and
detect potential damage (Ge et al. 2016; Herrasti et al. 2016; Huang
et al. 2015; Pan et al. 2016; Watters et al. 2002; Worden et al.
2007), including favorable features of wireless data transmission,
high reliability, and ease of operation. Particularly, integration of
wireless sensor networks with unmanned aerial systems (UAS)
technology has recently demonstrated great potential for SHM of
the large-scale civil infrastructures (Ge et al. 2016; Pan et al. 2016).
These advanced sensor technologies enable engineers to capture
large amounts of data. The complexity and heterogeneity of these
sensor data, however, pose great challenges to big data analysis for
SHM and damage detection (Pan et al. 2016; Gui et al. 2017).

Much research has been conducted on data analysis using
physics-based approaches (Salawu 1997; Doebling et al. 1998;
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Chinchalkar 2001; Yang et al. 2004; Lee 2009; Wang and Chen
2013; Lin et al. 2014; Pavlopoulou et al. 2016) for structural con-
dition diagnostics and damage detection. These methods are
using captured sensor data to calibrate/interpret physics-based vi-
bratory characteristics of structural systems (Salawu 1997;
Chinchalkar 2001; Lee 2009; Fahim et al. 2013), including natu-
ral frequency, mode, and curvature. Although these physics-
based analytical models and simulation techniques are now well
established (Zou et al. 2000; Magalhães et al. 2012; Kopsaftopoulos
and Fassois 2013; Masciotta et al. 2014; Comanducci et al.
2016), rapidly and accurately interpreting large amounts of data
and pattern recognition still lag behind. This is a big challenge,
particularly when the cable-stayed bridges are under complex
operational or environmental interference in which the physics-
based techniques could be incapable of recognizing and detect-
ing abnormality.

Alternatively, another type of data analysis is the data-driven
approach (Hou et al. 2000; Farrar and Worden 2013), such as the
machine learning techniques that have been receiving increased
attention for data mining for large-scale civil infrastructure applica-
tions (Ko and Ni 2005; Rashedi and Hegazy 2015; Gerist and
Maheri 2016; Jang 2016; Gui et al. 2017; Pan et al. 2018). The data-
driven approaches tend to extract sensitive features from big data
sets for structural diagnosis and damage detection, regardless of the
complexity of physical systems. Thus, they are robust enough to
provide the key information from the complex and heterogeneous
sensor data, which may be no longer valid for the physics-based
approaches. Some pioneer studies have been undertaken in the data-
driven structural diagnosis and damage detection in structures,
including using Bayesian networks (Masri et al. 2000), artificial
neural networks (Zang and Imregun 2001), and support vector
machines (SVMs) (Oh and Sohn 2009; Farrar and Worden 2013;
Gui et al. 2017). Note that the accuracy of these data-driven meth-
ods for structural diagnosis is associated with the proper selection
of feature data. From a systematic standpoint, few attempts, how-
ever, have been made to address data-driven structural diagnosis
and damage detection for cable-stayed bridges in terms of the
applicability of feature extraction techniques and data training.
Findings from these previous studies may not fully account for the
data process under various scenarios in a cable-stayed bridge.
Furthermore, the data-driven approaches also expand the function-
ality of those physics-based conventional methods (e.g., wavelet or
short-time Fourier transforms), which are defined in time-frequency
series to be more robust and have adaptive tools for feature extrac-
tion (Bin et al. 2012). Also, the other time-frequency techniques,
including the Hilbert-Huang transform (HHT) (Yang et al. 2004;
Hsu et al. 2013) and the Teager-Huang transform (THT) (Li et al.
2010), have been proposed for the data process in aerospace and
mechanical engineering (Kim and Melhem 2004). The selection of
feature extraction methods is key to ensuring the effectiveness of
data the process in machine learning. The signal for time-frequency
feature extraction is within a short time domain. Although many
time-frequency methods are available, these methods have similar
limitations in the short-time domain. Thus, it could be really time-
consuming and nonrealistic to run the analysis over a longer period
of time. For a longer time, sampling using certain time intervals
could compensate for this drawback, and the training samples in the
machine learning could capture fully statistical features under those
certain time intervals. Within the time interval, the time-frequency
analysis could be conducted. As a result, statistic properties of lon-
ger time signals could be captured by the learning process, which
could effectively avoid the averaging or subjective criteria. With
this framework one could have more flexible criteria for the

selection of feature extraction methods. For instance, the wavelet
transform has less sensitivity to noise, but the other methods,
including the HHT and THT, have more sensitivity to damage.
Thus, integration of these methods into the structural diagnosis for
large-scale cable-stayed bridges could enrich the categories of fea-
ture extractions for the data-driven data process, and, in turn, open a
new door for data-driven approaches with widespread implementa-
tions for large-scale civil engineering structures.

Therefore, this study aimed to develop a data-driven frame-
work for structural diagnosis and damage detection using a SVM
integrated with enhanced feature extraction techniques, striving
for rapid condition assessment for large-scale cable-stayed
bridges. Three representative feature extraction methods, includ-
ing the wavelet transform, the HHT, and the THT, were selected.
A numerical simulation was used to verify the concept and demon-
strate the effectiveness and sensitivity of the data-driven damage
detection for cable-stayed bridges. Moreover, a further paramet-
ric study was conducted to address the impact of damage level,
damage location, sensor location, and moving loading on the
data classification.

Proposed Data-Driven Techniques for
Damage Detections

Advanced sensor network systems using the wireless passive net-
works enable the collection of massive amounts of data for SHM
and damage detection (Ge et al. 2016; Pan et al. 2016). Data mining
in the SHM of the cable-stayed bridges is crucial to gain key infor-
mation for assessing their structural health and identifying potential
damage/defects (e.g., in stay cables or decks). As stated earlier, the
physics-based and data-driven methods (particularly machine learn-
ing) are two approaches for structural assessment and damage
detection. A statistical pattern recognition paradigm in the SHM
applications has recently been proposed (Farrar and Worden 2013;
Gui et al. 2017). The data mining process is classified into four
steps: (1) operational evaluation, (2) data acquisition, (3) feature
extraction, and (4) statistical model development for feature classi-
fication. A framework, illustrated in Fig. 1, is proposed, displaying
the data-driven workflow from a massive amount of acquired data
to sensitive feature extraction. To effectively capture sensitive fea-
tures of the data collected from the bridges, the framework consists
of the specific seven steps, including data fusion, damage feature
extraction and feature analysis, machine learning, and damage
detection, as shown in Fig. 1.

Consider that actual field sensor data are very limited in the liter-
ature and may not account for the data for damage scenarios in most
cases. Numerical simulation was accepted for the conceptual dem-
onstration (Oh and Sohn 2008; Silva et al. 2016); thus, the simulated
data in this paper are used. To better represent the sensor data cap-
tured in a field in which they are exposed to various operational or
noise interference, different levels of noises were introduced in the
data process in Step 3 (Fig. 1) in this study. Note that field data
could be contaminated by various factors and be more complex
than simulated data, which could cause a number of challenges in
the data process. Thus, more attention will be paid to these issues in
further studies.

Assuming that data type is a time series, various feature
extraction methods, including the wavelet transform, the HHT,
and THT, are candidates to extract damage-sensitive features
from time series data. The SVM learning algorithms are specifi-
cally designed for classification between damage and undamaged
cases, in which the radial basis function (RBF) kernel in this
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paper is chosen as the kernel function, as detailed in the following
sections.

Data-Driven Feature Extraction and Data
Processing Techniques

Dynamic characteristics of cable-stayed bridges exhibit apparent
nonstationary and nonlinear behavior (Bornn et al. 2010). Time-
frequency analysis is effective for tracking the change of a system
and its nonlinear behavior (Li et al. 2010), and the conventional
techniques are mostly encompassed by the wavelet transform,
short-time Fourier transform, and Wigner-Ville distribution (Feng
et al. 2013). These methods have some drawbacks in data analysis,
such as high computational time and less adaptive features. The
emerging techniques, including the HHT and THT, have demon-
strated great potential for data-driven time-frequency analysis (Li
et al. 2010; Yang et al. 2004; Hsu et al. 2013). The HHT and THT
display a sparse feature and have no limitation by the Heisenberg
uncertainty principle compared with their conventional counter-
parts, although these methods have their own limitation in noise
sensitivity. The literature review shows that few attempts have been
made to address the impact of various feature extraction methods
on structural condition assessment and damage detection, particu-
larly for large-scale cable-stayed bridges. Thus, the authors selected
three representative feature extraction methods and the data process
using supervised machine learning, including the wavelet trans-
form, the HHT, and the THT, which is discussed in the next section.

Wavelet Transform

Wavelet transform, due to the excellent local zooming property of
the wavelet, is an effective tool for time-frequency decomposition

for analyzing nonstationary signals (Daubechies 1990; Sun and
Chang 2002; Yan et al. 2014), including the discrete wavelet
transform (Daubechies 1990), the wavelet packets transform (Sun
and Chang 2002), and the continuous wavelet transform (Yan
et al. 2014). Among them, the continuous wavelet transform
could provide more smooth and specific time-frequency resolu-
tion throughout the signals over the other two methods. Thus, the
multiresolution continuous wavelet analysis is used in this paper
to decompose the signal in time and frequency domain with a
Morlet mother wavelet (Yan et al. 2014). The continuous wavelet
transform of a continuous signal, x tð Þ, is defined as (Yan et al.
2014)

Wx a; bð Þ ¼ x� c b; a tð Þ ¼ 1ffiffiffi
a

p
ðþ1

�1
x tð Þc � t � b

a

� �
dt (1)

where c and c � = basic function and its complex conjugate; and a
and b are the scale and translation factors, respectively. A signal
through Eq. (1) is to be projected into a two-dimensional (2D) time-
scale plane and can be achieved by a pair of Fourier transform and
inverse Fourier transforms [Eq. (2)]. The form in the frequency do-
main is expressed as (Yan et al. 2014)

Wx a; fð Þ ¼ 1ffiffiffi
a

p
2p

ðþ1

�1

t � b
a

� �
dt

� �
e�j2p f tdb ¼ F Wx a; bð Þ� �

(2)

where Ff�g donates the Fourier transform. By using the inverse
Fourier transform, Eq. (2) is converted into the time domain as

Wx a; tð Þ ¼ F�1 Wx a; fð Þ� �
(3)

Fig. 1. Framework of data-driven data mining process for SHM and damage detection (Note: SNR = signal-to-noise ratio)
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where F�1f�g denotes the inverse Fourier transform. The variation
of the scale factor, a, could yield different resolutions in different
domains. A relatively small-scale factor could provide a high reso-
lution in the time domain, whereas one could have better resolution
in the frequency domain with an increase of the scale factor. As a
result, the continuous wavelet transform is capable of generating
better adjustable time and frequency resolutions at any scale than
the other two methods. Note that the continuous wavelet transform
is abbreviated as the wavelet transform for simplicity, unless other-
wise noted.

HHT

The HHT is a novel technique of signal decomposition with many
interesting properties. The HHT consists of empirical mode
decomposition (EMD) and Hilbert spectral analysis through the
generation of intrinsic mode function (IMF) using the EMD
(Mandic et al. 2013) and the HHT time-frequency description of a
time series for the obtained IMFs. The process of EMD to decom-
pose the simple embedded oscillatory mode from any signal x tð Þ
has been documented in detail (Huang et al. 1971).

The EMD acts essentially as a dyadic filter bank resembling
those involved in wavelet decompositions (Flandrin et al. 2004).
The frequency bands range from high to low as the IMFs increase.
The residue rn represents the central tendency of signal x tð Þ (Yu
et al. 2005). By using this algorithm, the beginning h1k tð Þ will con-
tain the highest frequency. The Hilbert transform is used to describe
the IMFs

H hik tð Þ½ � ¼ 1
p

ðþ1

�1

hik tð Þ
t � t

dt (4)

After using the Hilbert transform for each IMF, the signal x tð Þ
can be defined as follows:

x tð Þ ¼ Re
Xn
i¼1

ai tð Þej
Ð
v i tð Þdt (5)

where Re stands for “real part”; v j tð Þ ¼ 2p fj tð Þ; and j ¼ ffiffiffiffiffiffiffi�1
p

.
The Hilbert-Huang time-frequency spectrum H v ; tð Þ can be
expressed as follows:

H v ; tð Þ ¼ Re
Xn
i¼1

ai tð Þej
Ð
v i tð Þdt (6)

THT

The THT was introduced by Cexus and Boudraa in 2006 (Cexus
and Boudraa 2006). It has been used in the fields of aerospace and
mechanical engineering (Cexus et al. 2010; Junsheng et al. 2007;
Li et al. 2009). This method combines the EMD and Teager
energy operator (Flandrin et al. 2004). The IMFs are demodulated
into instantaneous frequency (IF) and instantaneous amplitude
(IA) signals. The Teager-Kaiser energy operator (TKEO) is
selected as an energy demodulation method to simultaneously
track these IF and IA components (Bouchikhi et al. 2014). The
TKEO has high time resolution and ease of operation, while
maintaining the meaningful quantity frequency and amplitude of
each IMF. The signal x tð Þ can be expressed as the following form
using the THT:

x tð Þ ¼ Re
Xn
i¼1

ai tð Þe j
Ð
v i tð Þdt þ rn tð Þ (7)

This equation can be written as a three-dimensional (3D) fig-
ure t; fi tð Þ; ai tð Þð Þ. The Teager-Kaiser spectrum (TKS) can be
defined as follows:

TK t; fð Þ ¼

a1 tð Þ f1 tð Þ and t for IMF1

a2 tð Þ f2 tð Þ and t for IMF2

..

.

an tð Þ fn tð Þ and t for IMFn

8>>>>>><
>>>>>>:

(8)

Eq. (8) shows that the time-frequency distribution has K one-
dimensional (1D) trajectories to be nonzero. Thus, the number of
points is KT dimensions, which are concentrated in some trajecto-
ries and are smaller than other time-frequency spectrums, such as
the wavelet transform.

Fig. 2. Manavgat cable-stayed bridge layout and the cross section of the structural members
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Machine Learning Using SVM

The SVM is one of the effective supervised machine learning tech-
niques in data classification (Farrar and Worden 2013; Gui et al.
2017; Pan et al. 2018). In this method, a hyperplane is used to sepa-
rate the two different classes of samples based on the SVM training
algorithm (training data) and by maximizing the “margin,”which is
the distance from the hyperplane to the closest data points in either
class. By defining the kernel function as the inner product, the data
can be mapped into a higher dimensional feature space; thus, the
SVM can be applied to nonlinear classification problems. For this
purpose, various kernel functions can be used, such as the linear,
polynomial, or Gaussian RBF.

Because the acquired data are not always separable, it is reasona-
ble to ignore the outlier data points and use the soft margin SVM,
which includes the slack variable j i and the error penalty c. Thus,
the margin is defined as (Farrar andWorden 2013)

Margin ¼ 2
w2

(9)

Therefore, the optimization problem is defined in Eqs. (10a)
and (10b)

min
1
2
jjwjj2 þ c

XN
i¼1

j i

 !
(10a)

Subject to yi w; xi þ bð Þ � 1� j i; j i � 0 (10b)

where w and b = vector and scalar that define the position of the
hyperplane , and j i = measure of how much an observation fails to
satisfy the target margin. Therefore, the nonlinear decision function
can be defined using the Lagrange multipliers algorithm and by
solving the dual optimization problem as (Farrar andWorden 2013;
Gui et al. 2017)

f xð Þ ¼ sign
XN
i¼1

aiyiK x; xið Þ þ b

" #
(11)

Fig. 3. Framework of data-driven data mining process for SHM and damage detection

Table 1. Test Cases Used in the Data Analysis

Label Condition Description

Undamaged states (1–4)
1 Undamaged Baseline condition
2 Undamaged Added 8% additional mass uniformly on the bridge deck (static)
3 Undamaged AASHTO HL-93 design truck moving through the span (dynamic, v = 10 m/s)
4 Undamaged AASHTO HL-93 design truck moving through the span (dynamic, v = 20 m/s)
Damaged states (5–15)
5 Damaged 10% reduction of cable area at the A4 (one side)
6 Damaged 20% reduction of cable area at the A4 (one side)
7 Damaged 30% reduction of cable area at the A4 (one side)
8 Damaged 40% reduction of cable area at the A4 (one side)
9 Damaged 50% reduction of cable area at the A4 (one side)
10 Damaged 20% reduction of cable area at the A2 (one side)
11 Damaged 20% reduction of cable area at the A6 (one side)
12 Damaged 40% reduction of cable area at the A2 (one side)
13 Damaged 40% reduction of cable area at the A6 (one side)
14 Damaged 40% reduction of cable area at the A4 (one side)þmoving load (10 m/s)
15 Damaged 40% reduction of cable area at the A4 (one side)þmoving load (20 m/s)

© ASCE 04018033-5 J. Bridge Eng.
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Fig. 4. (a–c) Input sweeping excitation forces under three different methods
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Case Study

Prototype Structure

The Manavgat cable-stayed bridge, located in Turkey, was selected
from the literature (Atmaca et al. 2015; Atmaca et al. 2014) for nu-
merical analysis. The layout and the cross sections of the structural
members of the bridge are shown in Fig. 2. The bridge is 202 m
long with equal spans of 101 m, and a total of 28 steel cables con-
nect the 13.7-m wide deck to the l -shape steel tower. The tower is
approximately 42 m high with a hollow hexagonal cross section and
placed on a concrete footing. The deck has a composite cross sec-
tion, which consists of 25 cm of concrete, 10 cm of pavement, and
two continuous steel girders that are laterally restrained by I-beams
that are each approximately 3 m.

The distance of the nearest cable to the center of the pylon is
19.6 m, and the distance between the cables is 12 m. The last cables
are connected to the deck 9.4 m away from the abutments. Cables
A1–A7 include 14, 16, 19, 19, 22, 19, and 24 strands, respectively.
Each strand has a cross-section area of 150mm2, an elastic modulus
of 197 GPa, and the ultimate strength of 1,860 MPa. The elastic

moduli for the concrete and steel materials have been defined as 34
and 200 GPa, respectively.

Numerical Simulation

Nonlinear time history analyses were performed using commer-
cially available SAP2000 software. The following assumptions
were made to idealize the finite-element modeling: (1) the deck is
continuous, (2) the cables carry only axial forces, and (3) the soil-
structure interaction and the effects of nonstructural components
are negligible. To calibrate the model, the modal analyses revealed
that the first six periods of the bridge predicted by this study, rang-
ing from 0.309–0.825 s, matched well with those in the literature
(Atmaca et al. 2015; Atmaca et al. 2014).

Because the damping ratio is considerably high and the natural fre-
quencies of the bridge are very close to each other, instead of impact
load, a chirp excitation with time-dependent amplitude and frequency
(sweeping frequency) was applied to the deck at the midpoint of the
left span. The acceleration of all 28 joints (end of cables) was cap-
tured (using accelerometer sensors). The excitation had a sweeping
signal from 0–5Hz. The sampling rate of this model was 100 Hz.

Fig. 5. (a–c) Feature extraction from time-frequency distribution planes
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A total of 15 test cases were defined to verify the effectiveness
and accuracy of the proposed approaches, as listed in Table 1. The
dynamic responses at the location of A4 in Fig. 2 were selected to
demonstrate the concept, unless stated elsewhere. State 1 was used
as the baseline condition without any damage, whereas States 2–4
were designed to simulate the bridge fully loaded with vehicles at
both static load and with an AASHTO HL-93 (AASHTO 2008)
moving design truck for the consideration of the operational influ-
ence. States 5–15 were designed for various damage scenarios.
Among them, States 3–9 were designed to simulate the defects
reducing cable stiffness, under five different damage levels in stay
cables (from 10 to 50% of cable area at location A4). States 10–13
were used to determine the effects of damage locations on data clas-
sification, in which State 11 represents the location of a quarter span

and State 10 is located at the three-quarter span. The last two cases
were designed to account for the combined effects of moving load-
ing as well as the reduction of cable area, in which two speeds of the
design truck are 10 and 20 m/s, respectively, in accordance with the
operational conditions at States 3 and 4.

Introduction of Noise Interference in Data

Noise is a challenge for damage detection (Simonovski and Bolte
2003; Pakrashi et al. 2007); therefore, in this study, noise was added
to the response of the bridge signals. A different noise level was
selected as the representative sensor data for SVM learning to check
the sensitivity of the damage feature. The training data for SVM
were simulated by adding different noises based on the signal-to-

Fig. 6. (a–i) Scatter plots of three main features
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noise ratio (SNR), which represents the ratio of the signal strength
to the background noise strength (Simonovski and Bolte 2003;
Pakrashi et al. 2007). The SNR is usually described in the decibel
(dB) scale as

SNRdB ¼ 10 log10
Psignal

Pnoise

� �
(12)

where Psignal and Pnoise = average power of signal and noise, respec-
tively. Five different levels of SNRs are used in this study: 5, 10, 20,
40, and 50 dB (Fig. 3). In addition, for each SNR level, 100 samples
were selected to train the SVM model (4 cases� 5 SNRs� 100
samples = 2,000 signals in total). The final samples were separated
randomly into two equal parts as training data and testing data. To
prevent overfitting of the problem, the cross-validation procedure
was used to get the effective estimation of the models. The testing

data were used to evaluate the performance of the machine learning
algorithm. For simplicity, each group of samples was named in ac-
cordance with the feature extraction method and the level of the
SNR. For example, 20-SNR-wavelet denotes the data predicted by
the wavelet with a SNR of 20 dB, whereas 50-SNR-THT represents
the data predicted by the THTmethod with a SNR of 50 dB.

Results and Discussions

Feature Extraction and Sensitivity

The sampling frequency of this model is 100 Hz. A sweeping signal
from 0 to 5 Hz was excited at the midpoint of the left span. The
time-frequency representations of the wavelet transform, HHT, and
THT under the sweeping signal are plotted in Figs. 4(a–c). Clearly,

Fig. 6. (Continued.)
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for a regular signal, the THT, due to the high time resolution, had
the highest concentration and the fewest boundary effects compared
with the other two methods. Although the HHT has sparse charac-
teristics similar to that of THT, the HHT still displayed certain
boundary effects under regular signals, as shown in Fig. 4(b). The
wavelet had the highest boundary effects with an apparently wide
band. Further comparison of the time-frequency distribution pre-
dicted by the HHT and THT demonstrated that the THT is more
sensitive to the change of signal.

The time-frequency plane is capable of providing more key in-
formation than that of the time domain or frequency domain field. It
is also more effective for tracking a number of sensitive features
from this plane. The 2D box is used to separate the damage-
sensitive features, as shown in Fig. 5.

A feature selection process, the time-frequency box, was used to
choose the best sensitive feature (Lin and Qu 2000). The concept of
a feature selection process is based on counting the maximum num-
ber of outline samples that exceed the 5 and 95% of the feature
value at the baseline condition. The feature is also relevant to the
main frequency andmain time domain point, as reported in the liter-
ature (Lin and Qu 2000). The mean value of each box contained a
time-frequency representation point, which is used to eliminate the
influence of noise in the signal as

Featurei ¼
PN
i¼1

TFRi

N
(13)

Fig. 6. (Continued.)
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where N = number of time-frequency representation point; and
TFRi = time representation point in Figs. 5(a–c). The wavelet func-
tion is used in the wavelet transform. Different boxes throughout the
entire time-frequency domain are used to select the damage features,
as shown in Fig. 5(a). The box information represents all the
dynamic information of the response of the signal; thus, there are 11
boxes covering the entire main frequency field. For the HHT and
THT features in Figs. 5(b and c), the selected box is somewhat dif-
ferent from the wavelet, and a total of 13 parallelogram boxes have
been selected. The average of the time-frequency representation
point, which is greater than zero in the box, has been chosen as the
damage feature

Featurei ¼
PN
i¼1

TFRi > 0ð Þ
N

(14)

Effectiveness of Various Feature Extraction Methods
and Data Training

To demonstrate the cost-effectiveness of each feature extraction in
computation, the consumed time was determined under the identical
situation using MATLAB software. Clearly, the wavelet has a com-
putation time of 6.996 s, which is longer than those of the HHT or
THT by 0.775 s or 0.7201 s, respectively. As discussed previously,

Fig. 6. (Continued.)
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the HHT and THT algorithms have great potential for data-driven
time-frequency analysis, particularly in terms of a sparse feature and
no limitation by the Heisenberg uncertainty principle; thus, they per-
form approximately 10 times faster than the wavelet algorithm. Note
that such a comparison is only for the demonstration of time con-
sumption under current identical computation capacities, and other
resources could compensate for their computation capacities.

To better understand the performance of the machine learning
techniques, the selection of effective and sensitive damage features
are in high demand. A perfect damage-sensitive feature is theoreti-
cally sensitive and robust to all kinds of damage, even under high
variations and other interference. The data identification was dem-
onstrated using the 3D scatter plot shown in Fig. 6, in which the
circles and stars denote individual specimens under damage and
undamaged states, respectively. Note that the main feature of each
feature extraction method should be constant when estimated based
on the data obtained from the numerical model. However, the influ-
ence of the different ratios of noise and the presence of operational
conditions as well as damage could make the data separate. As
clearly illustrated in Figs. 6(a–i), all nine plots exhibit a significant
difference in data trend to allow clear identification of undamaged
or damaged cases. The feature is expected to have a different cluster
accordingly, for example, for the case of the 20-SNR-wavelet
shown in Fig. 6, there exist four clusters and each cluster is totally
separated. Clearly, three different feature extraction methods could
help to maintain a high sensitivity to the presence of damage, when
the SNR is under a certain level. The cluster appeared for the wave-
let method as the SNR increased from 5 to 20 dB. In contrast, the
clusters of the HHT and THT started as the SNR varied from 20 to
50 dB. That is, the wavelet has a lower divergent than HHT and
THT, when the SNR is equal to 20 dB.

The feature vectors were split in the test and training matrices.
The training matrix was composed of different features from 50 of
100 simulated signals that have different noise levels of SNR. Thus,
for each SNR scenario, the training matrix with a dimension of
Feature number½ � � Cases� 50½ � was used for the SVM to learn
the underlying distribution and dependency of all the damage and

undamaged states. During the testing process, the SVM was
expected to detect the defects (reduction of cable stiffness in this pa-
per) from the original conditions when the features are used in
Cases 5–13, even in the presence of operation effects.

To further verify the accuracy of the data-driven SVM method
in this paper, the receiver operating characteristic (ROC) curve and
area under the curve (AUC) were used (Gui et al. 2017). Both meth-
ods also help to determine how accurate the proposed damage iden-
tification is for distinguishing between undamaged and damaged
cases. The ROC curves of testing groups were plotted for all 11
cases, as shown in Figs. 7(a–c). Qualitatively, the wavelet feature-
based curves go through the left upper corner, suggesting that it has
the best accuracy in damage classification, when the SNR is larger
than 20 dB, as shown in Fig. 7(a). The ROC curves demonstrated
that the wavelet has better accuracy when distinguishing the dam-
age cases from undamaged data than those of the HHT and THT,
when the noise of signal is assigned as 20 dB. Fig. 7(c) shows that
all the damage features have greater accuracy, when the SNR
reaches up to 40 dB or greater. The plots also demonstrate that the
wavelet feature extraction has less impact by noise. Moreover, the
wavelet performs better than that of THT with a SNR of 40 dB,
evenwhen the SNR in the wavelet method is equal to 10 dB.

Using the levels of the AUC as acceptance criteria has been
widely accepted in clinical studies (Fan et al. 2006). The AUC val-
ues for each case are listed in Table 2, in which the value of the
AUC = 1 denotes a 100% precise prediction, and the predicted
results will be unacceptable when the ROC curve has an
AUC 	 0:75. As clearly illustrated in Fig. 7(c), the data predicted
by the THT with a SNR of 20 dB will not be acceptable because it
has a low value of AUC ¼ 0:7344, which is smaller than the
threshold of 0.75 (Table 2).

Damage Detection and the Effects of Major Factors on
Its Effectiveness

From an engineering standpoint, engineers may be concerned about
the effectiveness of damage identification, what levels the damage/

Fig. 6. (Continued.)
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defects are at, and the sensitivity of the techniques that the sensor
should be placed. Therefore, a further parametric study was con-
ducted in this paper and the following discussions are characterized
by major factors of interest, including effects of damage level, dam-
age location, sensor location, and moving load.

Effects of Damage Level on Data Classification

As initially designed in Table 1, the introduction of stiffness degra-
dation in stay cables by reducing the cross-sectional area of a cable
by 10–50% was done to simulate various damage levels. The

damage index (DI) is defined as the values from the feature vectors
as follows:

DIi ¼
XN
i¼1

ai � Labeli � Kernel Feai; Featureið Þ þ bÞ (15)

where Labeli, ai, b, and Featurei are derived and selected as the sup-
port vector points from the training process, respectively; and Feai
is the feature from the input data, while Featurei is the resulting fea-
ture, as predicted by Eq. (14). This index helps to assess the

Fig. 7. (a–c) ROC curves for accuracy of the data training using three feature extraction methods

© ASCE 04018033-13 J. Bridge Eng.

 J. Bridge Eng., 2018, 23(6): 04018033 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 O

f 
B

ri
tis

h 
C

ol
um

bi
a 

on
 0

8/
25

/2
2.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



performance of the classifiers of the SVM with enhanced feature
extraction methods. Figs. 8(a–f) plot the DIs of different damage
scenarios along with a threshold based on the 95% cutoff of the
baseline condition.

As shown in Figs. 8(a–f), a threshold at 95% of the undamaged
state shown by the dashed line is used to discriminate the damage
and undamaged states. Each slot represents a state, as labeled in
Figs. 8(a–f) and defined in Table 1, whereas damage states are
plotted in the first column and undamaged ones in other columns.
Clearly, the entire scenario shows a great classification perform-
ance, regardless of the different feature extraction methods.
Specifically, the results in the THT and HHT methods exhibit
clear discrimination between each damaged state and apparently
have a separable relationship between the damaged and undam-
aged states, even under operational and environmental variability.
As discussed earlier, the data classification could be a challenge
with an increase in noise level. As illustrated in Fig. 8(b), data
points show much higher scatter due to the higher level of noise.
Because the machine learning in this paper is a binary algorithm,
the physical insights of each data point cannot fully account for
the levels of the damage. A further study is required in advanced
machine learning to build up a stronger correlation of data with
the physical characteristics of a structure system.

The performance of the data-driven classification and the
effects of damage levels on their effectiveness could be assessed
by defining Type I and Type II errors (Figueiredo et al. 2011).
Type I is defined as the false-positive classification, whereas the
Type II is the false-negative one. From a system level, engineers
could use the Type I error more than the Type II. Table 3 summa-
rizes the number of Type I and Type II errors for each algorithm.
In an overall analysis, different feature extraction methods and
SNR show a trade-off between Type I and Type II errors; the
THT-based algorithms are able to better detect damage (0.29 and
0.0%), and the HHT-based algorithms are able to better avoid
Type II errors (0.0 and 0.0%).

Effects of Damage Location on Data Classification

To demonstrate the damage distribution over the span, six states
(6, 8, and 10–13) were designed and organized to address the effects
of damage locations under two different damage levels on data clas-
sification. The first set, States 6, 10, and 11, represents three damage
locations at a quarter span, midspan, and three-quarter span, respec-
tively, whereas the second set, States 8, 12, and 13, has a higher
damage level of 40% cable stiffness reduction at the locations iden-
tical to the first set.

The results of the DIs of these scenarios are plotted in Figs.
9(a–f). Theoretically, the damaged location can lead to a
change of frequency response. As a result, data exhibit a
slightly higher variation due to different locations, particularly
when exposed to different damage levels. A comparison of
three different damage locations revealed that the data at the
quarter span exhibited a scattered distribution that was sparser
than the other two cases. Generally, the selected chirp excita-
tion includes a wide frequency band; hence, it is capable of
easily capturing the response of different states by using SVM
learning.

Fig. 7. (Continued.)

Table 2. AUC Values of Different Methods and Various Levels of the
SNR

SNR/dB

Algorithm

Wavelet HHT THT

5 0.9688 — —

10 0.9792 — —

20 0.9900 0.8912 0.7344
40 1.0000 0.9889 0.9134
50 1.0000 0.9899 0.99
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Fig. 8. (a–f) DIs from feature vectors under different damage levels
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Effects of Sensor Location on Data Classification

Another critical concern for the bridge engineering community is
the sensor distribution. Reasonably, the closer the sensors are
placed to the actual spots with damage/defects, the more sensitive
the data could be for data identification. For a large-scale cable-
stayed bridge, it is impossible to spatially distribute a large amount
of sensor nodes to each location. As a result, the reduction of density
of the sensor nodes could lead to missed readings of some damage-
sensitive locations. Thus, this requires that the data captured from
other locations are still capable of ensuring an effective data
classification.

To demonstrate the effectiveness of the proposed data-driven
methods and address the effects of the different sensor locations,
three different locations were selected, from quarter-span, midspan,
to three quarter-span, respectively, when subjected to the damage
condition, as discussed in States 5–9. Figs. 10(a–c) plot the DIs of
the results from three different sensor locations. Clearly, all cases ex-
hibit a separable relation for the damage cases from the undamaged
ones, regardless of the different locations, suggesting that the data
classifiers could still maintain a higher prediction even at a location
away from the damage spot. The reason behind this phenomenon is
mainly because of the feature selection process. In this study, a fea-
ture selection method is used before the machine learning data pro-
cess, whereas the trained features for all the cases are the highest sep-
arable data. Moreover, the ease in data classification is also due to
the response of this study idealized from the numerical simulation.
Consider that the actual data in the field could be easily contami-
nated by complex operational conditions, in which some dynamic
information may disappear due to other localized interferences.

Effects of Moving Vehicle Load on Data Classification

Moving vehicles have been identified as excitation in the system
identification and damage detection of the bridges (Zhang et al.
2012; Zhu and Law 2015). Moving vehicle loads can excite struc-
tural vibrations with large amplitudes and high SNRs (Zhang et al.
2012; Zhu and Law 2015). To discuss the effects of the moving ve-
hicle on the data identification, States 14 and 15 were designed
using the AASHTO HL-93 design truck with two speeds compared
with the baselines at States 3 and 4 (AASHTO 2008). For simplic-
ity, only the results using machine learning with the wavelet trans-
form are presented. The major trends of the effectiveness by the
other two methods should be identical to the early observations in
the previous sections.

Bridge responses, including dynamic displacement, velocity,
and acceleration at the midspan of the first span, are plotted in
Fig. 11. Clearly, dynamic characteristics of the cable-stayed bridge
under two speeds have no high variation. Also, from the point of
view of their dynamic response caused by a vehicle, there is no clear
separable relation between damaged and undamaged cases, as
reported in the literature (Zhang et al. 2017). This is partially

because the reduction of single cable stiffness may not be sensitive
to the dynamic response of the entire large-scale bridge.

Interestingly, the DIs of the results using SVM learning, illus-
trated in Figs. 12(a and b), revealed that the classifiers still have
high performance to ensure the identification of damaged and
undamaged cases, even under the noise level of 20 dB.

Conclusions

This study presented a time-frequency-based data-driven struc-
tural diagnosis and damage detection for large-scale cable-stayed
bridges. Three representative feature extraction techniques were
selected to enhance the feature extraction for sensor data, whereas
the kernel function-based SVM was used to facilitate pattern rec-
ognition and improve the identification of damaged and undam-
aged cases. The time-frequency analysis revealed that different
data-driven algorithms demonstrated respective advantages in dif-
ferent aspects. The developed strategy was finally illustrated
through a case study. The ROC curves and AUC values were used
as tools to quantify the accuracy of the optimization-based SVMs.
A further parametric study was conducted to address some major
concerns for practical applications in cable-stayed bridges. In sum-
mary, these conclusions can be drawn as follows:
1. The data-driven damage detection techniques exhibit high ac-

curacy for distinguishing between undamaged and damaged
cases, even when there are certain noise interferences and
operational conditions.

2. The time-frequency analysis is effective for damage detection
because the time-frequency analysis is more sensitive to dam-
age, when the dynamics change from different states. In addi-
tion, the change of the dynamic characteristic of the cable-
stayed bridges influences the time-frequency plane, providing
more key information than just time or frequency domain.
Accordingly, using data-driven machine learning can have a
high classification accuracy in time series.

3. Selecting better damage features is key to yielding good damage
classification for those complex data from large-scale cable-
stayed bridges. Results have demonstrated the importance of the
selection of damage feature techniques for damage detection.
Clearly, the wavelet transform has a significantly higher accu-
racy in noise interference than that of the HTH and THT. The
THT is the best algorithm for data analysis of regular signals, but
for irregular signals it has a poor performance because it has
higher sensitivity to local fluctuation. Furthermore, the ROC
curves and value of the AUC further confirm that the wavelet
transform behaves as a filter in the lower frequency part, leading
to a higher reliable data identification when compared with the
other two techniques.

4. Computation time is key for the data process, and this study
shows that the THT and HHT are almost 10 times faster than
the wavelet transform, which will be extremely important for
processing the massive amounts of data captured from large-
scale cable-stayed bridges in practice.

5. An extensive parametric study reveals that the data-driven clas-
sification could effectively address the major factors of interest,
including the effects of damage level, damage location, sensor
location, and moving load. The results in the THT and HHT
methods exhibit clear discrimination between each damaged
state, even under operational and environmental variability.
The DIs of the results under moving vehicle revealed that the
classifiers still have high performance to ensure the identifica-
tion of damaged and undamaged cases, even under the noise
level of 20 dB.

Table 3. Number and Percentage of Type I and Type II Errors

Algorithm SNR

Error

Type I (%) Type II (%) Total (%)

Wavelet 10 5.33 3.20 4.57
20 0.00 0.00 0.00

HHT 40 1.33 0.00 0.57
50 0.00 0.00 0.00

THT 40 0.00 0.40 0.29
50 0.00 0.00 0.00
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Fig. 9. (a–f) DIs from feature vectors under different damage locations
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6. This study is based on the simulated data, and actual field data
in the bridges could be more complex and could be contami-
nated by various operational and environmental variabilities.
As such, any further investigation on the effectiveness and
applicability of the proposed methods must be calibrated from
training data. More sources of variability must be well charac-
terized by the training data for the algorithms to accurately
learn their characteristics on the system’s response; thus, they

could help to distinguish the damage from the operational and
environmental variabilities.
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Fig. 11. Bridge dynamic responses under moving loads at two speeds

Fig. 10. (Continued.)
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U.S. DOT, and U.S. DOT CAAP Pipeline and Hazardous
Materials. The results, discussion, and opinions reflected in this
paper are those of the authors only and do not necessarily
represent those of the sponsors.

Notation

The following symbols are used in this paper:
DIi ¼ ith damage index;

Ff�g ¼ Fourier transform;
Feai ¼ ith feature from the input data;

Featurei ¼ ith resulting feature;
H[hik(t)] ¼ Hilbert transform;
H v ; tð Þ ¼ Hilbert-Huang time-frequency spectrum;
K x; xið Þ ¼ kernel function;
Labeli ¼ ith support vector point from the training

process;
Pnoise ¼ average power of noise;

Fig. 12. (a and b) DIs for the cases of the wavelet transform under moving loads
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Psignal ¼ average power of signal;
rn ¼ for which, no more IMFs can be extracted;

TK t; fð Þ ¼ Teager-Kaiser spectrum;
Wx(a, b) ¼ continues wavelet transform of the signal;

w ¼ vector that defines the position of the
hyperplane;

wi tð Þ ¼ instantaneous frequency;
x tð Þ ¼ original signal;
yi ¼ training data coordinates;
ai ¼ parameter of the hyperplane;
j i ¼ measure of how much an observation fails to

satisfy the target margin;
c ¼ basic function; and
c � ¼ complex conjugate of the basic function, c .

References

AASHTO. (2008). LRFDHL-93 Loading, Washington, DC.
Atmaca, B., Yurdakul, M., and Ates�, S�. (2014). “Nonlinear dynamic analy-

sis of base isolated cable-stayed bridge under earthquake excitations.”
Soil Dyn. Earthquake Eng., 66(Nov), 314–318.

Atmaca, B., Yurdakul, M., and Ates, S. (2015). “Dynamic behavior of
cables of cable-stayed bridge isolated with SCFP placed under pylon.”
Proc., 2015 World Congress on Advances in Structural Engineering
AndMechanics, Incheon, South Korea.

Battista, R. C., Pfeil, M. S., and Carvalho, E. M. (2008). “Fatigue life esti-
mates for a slender orthotropic steel deck.” J. Constr. Steel Res., 64(1),
134–143.

Bin, G. F., Gao, J. J., Li, X. J., and Dhillon, B. S. (2012). “Early fault diag-
nosis of rotating machinery based on wavelet packets—Empirical mode
decomposition feature extraction and neural network.” Mech. Syst.
Signal Process., 27(Feb), 696–711.

Bornn, L., Farrar, C. R., and Park, G. (2010). “Damage detection in initially
nonlinear systems.” Int. J. Eng. Sci., 48(10), 909–920.

Bouchikhi, A., Boudraa, A. O., Cexus, J. C., and Chonavel, T. (2014).
“Analysis of multicomponent LFM signals by Teager Huang-Hough
transform.” IEEE Trans. Aerosp. Electron Syst., 50(2), 1222–1233.

Cexus, J. C., and Boudraa, A. O. (2006). “Nonstationary signals analysis by
Teager-Huang transform (THT).” Proc., 14th European Signal Processing
Conf., IEEE, Florence, Italy, 1–5.

Cexus, J. C., Boudraa, A. O., and Bouchikhi, A. (2010). “A combined
Teager-Huang and Hough transforms for LFM signals detection.”
Proc., 2010 4th Int. Symp. on Communications, Control and Signal
Processing (ISCCSP), IEEE, Piscataway, NJ, 1–5.

Chinchalkar, S. (2001). “Determination of crack location in beams using
natural frequencies.” J. Sound Vib., 247(3), 417–429.

Comanducci, G., Magalhães, F., Ubertini, F., and Cunha, Á. (2016). “On
vibration-based damage detection by multivariate statistical techniques:
Application to a long-span arch bridge.” Struct. Health Monit., 15(5),
505–524.

Daubechies, I. (1990). “The wavelet transform, time-frequency localization
and signal analysis.” IEEE Trans. Inf. Theory, 36(5), 961–1005.

Doebling, S. W., Farrar, C. R., and Prime, M. B. (1998). “A summary
review of vibration-based damage identification methods.” Shock Vib.
Digest, 30(2), 91–105.

Fahim, A. A., Gallego, R., Bochud, N., and Rus, G. (2013). “Model-based
damage reconstruction in composites from ultrasound transmission.”
Composites Part B, 45(1), 50–62.

Fan, J., Upadhye, S., andWorster, A. (2006). “Understanding receiver oper-
ating characteristic (ROC) curves.” Can. J. Emergency Med., 8(1),
19–20.

Farrar, C. R., and Worden, K. (2013). Structural health monitoring: A
machine learning perspective, JohnWiley& Sons, Chichester, U.K.

Fasl, J. D. (2013). “Estimating the remaining fatigue life of steel bridges
using field measurements.” Ph.D. dissertation, Univ. of Texas at Austin,
Austin, TX.

Feng, Z., Liang, M., and Chu, F. (2013). “Recent advances in time–
frequency analysis methods for machinery fault diagnosis: A review
with application examples.” Mech. Syst. Signal Process., 38(1),
165–205.

Figueiredo, E., Park, G., Farrar, C. R., Worden, K., and Figueiras, J.
(2011). “Machine learning algorithms for damage detection under
operational and environmental variability.” Struct. Health Monit., 10,
559–572.

Flandrin, P., Rilling, G., and Goncalves, P. (2004). “Empirical mode
decomposition as a filter bank.” IEEE Signal Process. Lett., 11(2),
112–114.

Ge, R., Pan, H., Lin, Z., Gong, N., and Wang, J. (2016). “RF-powered
battery-less wireless sensor network.” Proc., 5th Int. Symp. on Next-
Generation Electronics, Hsinchu, Taiwan, 32–33.

Ge, Y., and Xiang, H. (2011). “Concept and requirements of sustainable de-
velopment in bridge engineering.” Front. Archit. Civil Eng. China, 5(4),
432–450.

Gerist, S., and Maheri, M. R. (2016). “Multi-stage approach for structural
damage detection problem using basis pursuit and particle swarm opti-
mization.” J. Sound Vib., 384(Dec), 210–226.

Gui, G., Pan, H., Lin, Z., Li, Y., and Yuan, Z. (2017). “Data-driven sup-
port vector machine with optimization techniques for structural health
monitoring and damage detection.” KSCE J. Civ. Eng., 21(2),
523–534.

Guo, T., Liu, Z., and Zhu, J. (2015). “Fatigue reliability assessment of ortho-
tropic steel bridge decks based on probabilistic multi-scale finite ele-
ment analysis.” Adv. Steel Constr., 11(3), 334–346.

Herrasti, Z., Val, I., Gabilondo, I., Berganzo, J., Arriola, A., and Martínez,
F. (2016). “Wireless sensor nodes for generic signal conditioning:
Application to structural health monitoring of wind turbines.” Sens.
Actuators A, 247(Aug), 604–613.

Hou, Z., Noori, M., and Amand, R. S. (2000). “Wavelet-based approach for
structural damage detection.” J. Eng. Mech., 10.1061/(ASCE)0733
-9399(2000)126:7(677), 677–683.

Hsu, W.-K., Chiou, D.-J., Chen, C.-W., Liu, M.-Y., Chiang, W.-L., and
Huang, P.-C. (2013). “RETRACTED: Sensitivity of initial damage
detection for steel structures using the Hilbert-Huang transform
method.” J. Vib. Control, 19(6), 857–878.

Huang, N. E., et al. (1971). “The empirical mode decomposition and the
Hilbert spectrum for nonlinear and non-stationary time series analysis.”
Proc. R. Soc. London, Ser. A, 454(1971), 903–995.

Huang, Q., Tang, B., and Deng, L. (2015). “Development of high synchro-
nous acquisition accuracy wireless sensor network for machine vibra-
tion monitoring.”Measurement, 66(Apr), 35–44.

Jang, J. (2016). “Development of data analytics and modeling tools for civil
infrastructure condition monitoring applications.” Ph.D. dissertation,
Columbia Univ., NewYork.

Junsheng, C., Dejie, Y., and Yu, Y. (2007). “The application of energy oper-
ator demodulation approach based on EMD in machinery fault diagno-
sis.”Mech. Syst. Signal Process., 21(2), 668–677.

Kim, H., andMelhem, H. (2004). “Damage detection of structures by wave-
let analysis.” Eng. Struct., 26(3), 347–362.

Ko, J. M., and Ni, Y. Q. (2005). “Technology developments in structural
health monitoring of large-scale bridges.” Eng. Struct., 27(12),
1715–1725.

Kopsaftopoulos, F. P., and Fassois, S. D. (2013). “A functional model based
statistical time series method for vibration based damage detection,
localization, and magnitude estimation.” Mech. Syst. Signal Process.,
39(1–2), 143–161.

Lee, J. (2009). “Identification of multiple cracks using natural frequencies.”
J. Sound. Vib., 320(3), 482–490.

Li, H., and Ou, J. (2016). “The state of the art in structural health monitoring
of cable-stayed bridges.” J. Civ. Struct. Health Monit., 6(1), 43–67.

Li, H., Zhang, Y., and Zheng, H. (2010). “Bearing fault detection and diag-
nosis based on order tracking and Teager-Huang transform.” J. Mech.
Sci. Technol., 24(3), 811–822.

Li, H., Zheng, H., and Tang, L. (2009). “Bearing fault detection and diagno-
sis based on Teager–Huang transform.” Int. J. Wavelets Multiresolution
Inf. Process., 7(5), 643–663.

© ASCE 04018033-21 J. Bridge Eng.

 J. Bridge Eng., 2018, 23(6): 04018033 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 O

f 
B

ri
tis

h 
C

ol
um

bi
a 

on
 0

8/
25

/2
2.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.1016/j.soildyn.2014.07.013
https://doi.org/10.1016/j.jcsr.2007.03.002
https://doi.org/10.1016/j.jcsr.2007.03.002
https://doi.org/10.1016/j.ymssp.2011.08.002
https://doi.org/10.1016/j.ymssp.2011.08.002
https://doi.org/10.1016/j.ijengsci.2010.05.011
https://doi.org/10.1109/TAES.2014.120202
https://doi.org/10.1006/jsvi.2001.3748
https://doi.org/10.1177/1475921716650630
https://doi.org/10.1177/1475921716650630
https://doi.org/10.1109/18.57199
https://doi.org/10.1177/058310249803000201
https://doi.org/10.1177/058310249803000201
https://doi.org/10.1016/j.compositesb.2012.09.003
https://doi.org/10.1017/S1481803500013336
https://doi.org/10.1017/S1481803500013336
https://doi.org/10.1016/j.ymssp.2013.01.017
https://doi.org/10.1016/j.ymssp.2013.01.017
https://doi.org/10.1109/LSP.2003.821662
https://doi.org/10.1109/LSP.2003.821662
https://doi.org/10.1007/s11709-011-0126-6
https://doi.org/10.1007/s11709-011-0126-6
https://doi.org/10.1016/j.jsv.2016.08.024
https://doi.org/10.1007/s12205-017-1518-5
https://doi.org/10.1007/s12205-017-1518-5
https://doi.org/10.1016/j.sna.2016.06.027
https://doi.org/10.1016/j.sna.2016.06.027
https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(677)
https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(677)
https://doi.org/10.1177/1077546311434794
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1016/j.measurement.2015.01.021
https://doi.org/10.1016/j.ymssp.2005.10.005
https://doi.org/10.1016/j.engstruct.2003.10.008
https://doi.org/10.1016/j.engstruct.2005.02.021
https://doi.org/10.1016/j.engstruct.2005.02.021
https://doi.org/10.1016/j.ymssp.2012.08.023
https://doi.org/10.1016/j.ymssp.2012.08.023
https://doi.org/10.1016/j.jsv.2008.10.033
https://doi.org/10.1007/s13349-015-0115-x
https://doi.org/10.1007/s12206-009-1211-9
https://doi.org/10.1007/s12206-009-1211-9
https://doi.org/10.1142/S0219691309003173
https://doi.org/10.1142/S0219691309003173


Li, H., Zheng, H., and Tang, L. (2010). “Gear fault detection based on
Teager-Huang transform.” Int. J. RotatingMach., 502064.

Lin, J., and Qu, L. (2000). “Feature extraction based on Morlet wavelet and
its application for mechanical fault diagnosis.” J. Sound Vib., 234(1),
135–148.

Lin, Z., Fakharifar, M., Huang, Y., Chen, G., and Wang, Z. (2014).
“Damage detection of a full-size concrete box girder bridge with the
moving-window least-square fitting method.” Proc., NDE/NDT for
Structural Materials Technology for Highway & Bridges, American
Society for Nondestructive Testing, Columbus, OH.

Magalhães, F., Cunha, A., and Caetano, E. (2012). “Vibration based
structural health monitoring of an arch bridge: From automated
OMA to damage detection.” Mech. Syst. Signal Process., 28(Apr),
212–228.

Maljaars, J., van Dooren, F., and Kolstein, H. (2012). “Fatigue assessment
for deck plates in orthotropic bridge decks.” Steel Constr., 5(2), 93–100.

Mandic, D. P., Rehman, N. U., Wu, Z., and Huang, N. E. (2013).
“Empirical mode decomposition-based time-frequency analysis of mul-
tivariate signals: The power of adaptive data analysis.” IEEE Signal
Process. Mag., 30(6), 74–86.

Masciotta, M. G., Ramos, L. F., Lourenço, P. B., and Vasta, M. (2014).
“Damage detection on the Z24 bridge by a spectral-based dynamic iden-
tification technique.” Dynamics of civil structures, F. Catbas, ed., 4,
Springer, Cham, Switzerland, 197–206.

Masri, S., Smyth, A., Chassiakos, A., Caughey, T., and Hunter, N. (2000).
“Application of neural networks for detection of changes in nonlinear
systems.” J. Eng. Mech., 10.1061/(ASCE)0733-9399(2000)126:7(666),
666–676.

MATLAB [Computer software]. MathWorks, Natick,MA.
Oh, C. K., and Sohn, H. (2008). “Unsupervised support vector machine

based principal component analysis for structural health monitoring.”
ICCES, 8(3), 91–99.

Oh, C. K., and Sohn, H. (2009). “Damage diagnosis under environmental
and operational variations using unsupervised support vector machine.”
J. Sound Vib., 325(1–2), 224–239.

Pakrashi, V., Basu, B., and O’Connor, A. (2007). “Structural damage detec-
tion and calibration using wavelet-kurtosis technique.” Eng. Struct.,
29(9), 2097–2108.

Pan, H., Azimi, M., Gui, G., Yan, F., and Lin, Z. (2018). “Vibration-based
support vector machine for structural health monitoring.” Proc., 7th Int.
Conf. on Experimental Vibration Analysis for Civil Engineering
Structures, J. Conte, R. Astroza, G. Benzoni, G. Feltrin, K. Loh, and B.
Moaveni, eds., 5, Springer, Cham, Switzerland.

Pan, H., Ge, R.,Wang, J., Gong, N., and Lin, Z. (2016). “Integrated wireless
sensor networks with UAS for damage detection and monitoring of
bridges and other large-scale critical civil infrastructures.” Proc., NDE/
NDT for Highway and Bridges: Structural Materials Technology,
American Society for Nondestructive Testing, Columbus, OH.

Pavlopoulou, S., Worden, K., and Soutis, C. (2016). “Novelty detection and
dimension reduction via guided ultrasonic waves: Damage monitoring
of scarf repairs in composite laminates.” J. Intell. Mater. Syst. Struct.,
27(4), 549–566.

Rashedi, R., and Hegazy, T. (2015). “Capital renewal optimisation for
large-scale infrastructure networks: Genetic algorithms versus advanced
mathematical tools.” Struct. Infrastruct. Eng., 11(3), 253–262.

Salawu, O. S. (1997). “Detection of structural damage through changes in
frequency: A review.” Eng. Struct., 19(9), 718–723.

SAP2000 [Computer software]. Computers & Structures, Inc., Walnut
Creek, CA.

Silva, M., Santos, A., Figueiredo, E., Santos, R., Sales, C., and Costa, J. C.
W. A. (2016). “A novel unsupervised approach based on a genetic algo-
rithm for structural damage detection in bridges.” Eng. App. Artif. Intell.,
52(Jun) 168–180.

Simonovski, I., and Bolte, M. (2003). “Damping identification using a con-
tinuous wavelet transform: Application to real data.” J. Sound Vib.,
262(2), 291–307.

Sun, Z., and Chang, C. (2002). “Structural damage assessment based on
wavelet packet transform.” J. Struct. Eng., 10.1061/(ASCE)0733
-9445(2002)128:10(1354), 1354–1361.

Wang, Z. C., and Chen, G. D. (2013). “A moving-window least squares fit-
ting method for crack detection and rigidity identification of multispan
bridges.” Struct. Control HealthMonit., 20(3), 387–404.

Watters, D. G., Jayaweera, P., Bahr, A. J., and Huestis, D. L. (2002).
“Design and performance of wireless sensors for structural health moni-
toring.” Proc., Review of Progress in Quantitative Nondestruc-tive
Evaluation, 615, American Institute of Physics, Melville, NY, 969–976.

Worden, K., Farrar, C. R., Manson, G., and Park, G. (2007). “The funda-
mental axioms of structural health monitoring.” Proc. R. Soc. London,
Ser. A, 463(2082), 1639–1664.

Xia, Y., Nassif, H., Hwang, E.-S., and Linzell, D. (2013). “Optimization of
design details in orthotropic steel decks subjected to static and fatigue
loads.” Transportation Research Record 2331, 14–23.

Yan, F., Chen, W., and Lin, Z. (2016). “Prediction of fatigue life of welded
details in cable-stayed orthotropic steel deck bridges.” Eng. Struct.,
127(Nov), 344–358.

Yan, F., Lin, Z., and Huang, Y. (2017). “Numerical simulation of fatigue
behavior for cable-stayed orthotropic steel deck bridges using mixed-
dimensional couplingmethod.”KSCE J. Civ. Eng., 21(6) 2238–2350.

Yan, R., Gao, R., and Chen, X. (2014). “Wavelet for fault diagnosis of ro-
tary machines: A review.” Signal Process., 96(Mar) 1–15.

Yang, J., Lei, Y., Lin, S., and Huang, N. (2004). “Hilbert-Huang based
approach for structural damage detection.” J. Eng. Mech., 10.1061
/(ASCE)0733-9399(2004)130:1(85), 85–95.

Yu, D., Cheng, J., and Yang, Y. (2005). “Application of EMD method and
Hilbert spectrum to the fault diagnosis of roller bearings.” Mech. Syst.
Signal Process., 19(2), 259–270.

Zang, C., and Imregun, M. (2001). “Structural damage detection using arti-
ficial neural networks and measured FRF data reduced via principal
component projection.” J. Sound Vib., 242(5), 813–827.

Zhang, W., Li, J., Hao, H., and Ma, H. (2017). “Damage detection in bridge
structures under moving loads with phase trajectory change of multi-
type vibration measurements.” Mech. Syst. Signal Process., 87(Mar),
410–425.

Zhang, Y., Wang, L. Q., and Xiang, Z. H. (2012). “Damage detection by
mode shape squares extracted from a passing vehicle.” J. Sound Vib.,
331(2), 291–307.

Zhu, X. Q., and Law, S. S. (2015). “Structural health monitoring based on
vehicle-bridge interaction: Accomplishments and challenges.” Adv.
Struct. Eng., 18(12), 1999–2015.

Zou, Y., Tong, L., and Steven, G. P. (2000). “Vibration-based model-
dependent damage (delamination) identification and health monitor-
ing for composite structures—A review.” J. Sound Vib., 230(2),
357–378.

© ASCE 04018033-22 J. Bridge Eng.

 J. Bridge Eng., 2018, 23(6): 04018033 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 O

f 
B

ri
tis

h 
C

ol
um

bi
a 

on
 0

8/
25

/2
2.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.1155/2010/502064
https://doi.org/10.1006/jsvi.2000.2864
https://doi.org/10.1006/jsvi.2000.2864
https://doi.org/10.1016/j.ymssp.2011.06.011
https://doi.org/10.1016/j.ymssp.2011.06.011
https://doi.org/10.1002/stco.201210011
https://doi.org/10.1109/MSP.2013.2267931
https://doi.org/10.1109/MSP.2013.2267931
https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(666)
https://doi.org/10.1016/j.jsv.2009.03.014
https://doi.org/10.1016/j.engstruct.2006.10.013
https://doi.org/10.1016/j.engstruct.2006.10.013
https://doi.org/10.1177/1045389X15574937
https://doi.org/10.1177/1045389X15574937
https://doi.org/10.1080/15732479.2013.866968
https://doi.org/10.1016/S0141-0296(96)00149-6
https://doi.org/10.1016/j.engappai.2016.03.002
https://doi.org/10.1016/j.engappai.2016.03.002
https://doi.org/10.1061/(ASCE)0733-9445(2002)128:10(1354)
https://doi.org/10.1061/(ASCE)0733-9445(2002)128:10(1354)
https://doi.org/10.1002/stc.502
https://doi.org/10.1098/rspa.2007.1834
https://doi.org/10.1098/rspa.2007.1834
https://doi.org/10.3141/2331-02
https://doi.org/10.1016/j.engstruct.2016.08.055
https://doi.org/10.1016/j.engstruct.2016.08.055
https://doi.org/10.1016/j.sigpro.2013.04.015
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(85)
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(85)
https://doi.org/10.1016/S0888-3270(03)00099-2
https://doi.org/10.1016/S0888-3270(03)00099-2
https://doi.org/10.1006/jsvi.2000.3390
https://doi.org/10.1016/j.ymssp.2016.10.035
https://doi.org/10.1016/j.ymssp.2016.10.035
https://doi.org/10.1016/j.jsv.2011.09.004
https://doi.org/10.1016/j.jsv.2011.09.004
https://doi.org/10.1260/1369-4332.18.12.1999
https://doi.org/10.1260/1369-4332.18.12.1999
https://doi.org/10.1006/jsvi.1999.2624
https://doi.org/10.1006/jsvi.1999.2624

